Transverse target spin asymmetries on a proton target at **COMPASS**

Friedrich-Alexander-Universität **Erlangen-Nürnberg**

PHYSICS

bmb+**f** - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

HEP 09, 09/07/18, Krakow, Poland

Transverse Spin Physics

Three distribution functions are necessary to describe the spin structure of the nucleon in LO:

Transverse Spin Physics in SIDIS

For measuring Transversity: quark spin must flip → Δ₋q(x) decouples from inclusive DIS

product of $\Delta_{T}q(x)$ and another chiral-odd function needed $\rightarrow \Delta_{T}q(x)$ can be extracted via SIDIS on a transversely polarized target.

Channels measured by COMPASS: $l N \rightarrow l' h X$ Collins asymmetry $l N \rightarrow l' h h X$ hadron pair asymmetry $l N \rightarrow l' \Lambda X$ Λ polarisation

Transverse Spin Physics in SIDIS

Two steps:

- Scattering of the lepton on the quark (distribution function)
- Production of hadrons from the struck quark (fragmentation function)

Kinematic variables:

- Q² = -q² ≈ 4 E E' sinθ/2 negative four-momentum transfer squared
- $\nu = E E'$ photon energy
- $x_{bj} = Q^2/(2M\nu)$ Momentum fraction of struck quark

• y = v/E inelasticity

• $z = E_h / v$ exclusivity

COMPASS Spectrometer at CERN (2007 run, proton target)

Polarized Proton Target (NH₃)

polarization: $P_{T} \approx 90 \%$ dilution factor f ≈ 0.15

<u>3 target cells with</u> opposite polarization

<u>transverse target</u> <u>polarization:</u> dipole field

<u>changed by microwave</u> <u>reversal:</u> once a week

Single Hadron Asymmetries

Two important possible azimuthal asymmetries in the distribution of single hadrons in SIDIS on a transversely polarized target are shown:

a) Collins effect:

Fragmentation of a transversely polarized quark with finite transverse momentum into a Spin 0 hadron.

 $A_{Coll} = \frac{A_C^n}{f \cdot P_T \cdot D_{nn}} = \frac{\sum_q e_q^2 \cdot \Delta_T q}{\sum_q e_q^2 \cdot q \cdot L}$

possibility to measure transversity!

Collins fragmentation function: being measured at Belle

b) Sivers effect:

Fragmentation of an "unpolarized" (unknown spin state) quark inside a transversely polarized nucleon.

Gives a measure of the correlation between transverse momentum and transverse spin.

A non-zero Sivers function needs orbital angular momentum of the quarks.

$$A_{Siv} = \frac{A_S^h}{f \cdot P_T} = \frac{\sum_q e_q^2 \cdot \Delta_0^T q \cdot D_q^h}{\sum_q e_q^2 \cdot q \cdot D_q^h}$$

f: dilution factor P_{τ} : target polarization D_{nn} : depolarization factor

D^h: unpolarized fragmentation function

 $\Delta_0^{T}q(x)$: Sivers distribution function

The Coordinate System

Collins and Sivers terms depend on different combination of angles:

Collins: $A_{coll} \sim \sin \Phi_{c}$ $\Phi_{c} = \phi_{h} - \phi_{s'} = \phi_{h} + \phi_{s} - \pi$

Sivers: $A_{siv} \sim \sin \Phi_{s}$

 $\Phi_{_{\rm S}} = \phi_{_{\rm h}} - \phi_{_{\rm S}}$

 ϕ_h : azimuthal angle of the hadron

 ϕ_s : azimuthal angle of the spin of the initial quark

 $\phi_{s'}$: azimuthal angle of the spin of the fragmenting quark with $\phi_{s'} = \pi - \phi_{s'}$ (spin flip)

Data Taking

Statistics after all cuts:

2002-04 (deuteron target)	hadrons for Collins	hadrons for Sivers
Total statistics	15.5 · 10 ⁶	15.5 · 10 ⁶
2007 (proton target)		
statistics of first results	11 · 10 ⁶	11 · 10 ⁶
(Transversity 08)		
reproduction of data with improved	29 · 10 ⁶	11 · 10 ⁶
quality (used for Collins)		

for Collins: usable statistics improved by a factor of 3

Data Quality and Systematic Checks

Tests on data for constant detector performance:

- 1. A dedicated set of **quality checks** has been developed and applied to satisfy this condition
- Detector and trigger performances
- Event reconstruction
- K⁰ reconstruction
- Stability of many kinematical variables: (Z_{vtx}, E_μ', φ_μ', x_{Bj} Q², y, W, E_{had}, φ_{hadLab}, θ_{hadLab}, φ_{hadGNS}, θ_{hadGNS}, p_T)
- 2. Several **systematics tests** have been performed:
- Splitting of the target into sectors
- False asymmetries tests
- Different methods for asymmetry extraction

Event Selection

Asymmetry Extraction

Splitting middle cell into two parts

- two pairs of cells with opposite polarization
- two independent values for the asymmetries per period

Extraction: 2D Binned Maximum Log-Likelihood Fit:

8 X 8 grid in $\boldsymbol{\Phi}_{h}$ and $\boldsymbol{\Phi}_{s}$

 $N_{j}^{\uparrow\downarrow}=a_{j}g_{j}^{\uparrow\downarrow}(\vec{A})$ with:

In each bin j = $\{1, 2, \dots, 64\}$ one expects N_i counts:

 $\begin{array}{l} \uparrow \downarrow & \text{sign of the target polarization} \\ a_j & \text{acceptance in bin j} \end{array}$

all 8 spin dependent modulations of the cross section in bin j

Sivers Asymmetries Proton Data

Asymmetries compatible with 0 within present statistical errors

Only statistical errors shown, systematic errors: 0.5 σ_{stat}

Sivers Asymmetries Proton Data

Comparison with predictions of Anselmino et al.: Eur. Phys. J.A 39: 89-100, 2009

Sivers Asymmetries – Comparison with HERMES

Sivers Asymmetries Deuteron Data

COMPASS: 2002-2004

• small asymmetries, compatible with 0

 only statistical errors shown, systematic errors considerably smaller

Final results, all deuteron data: NP B765 (2007) 31-70

the result was interpreted as a strong indication for cancellation of u and d quark Sivers function

Reproduced Data

- Reproduction with improved quality
- Improved quality checks
- Increased systematic checks

Instabilities of the spectrometer in the first part of the run for Sivers: extraction for full 2007 data difficult

Asymmetry extraction: Extended Unbinned Maximum Likelihood Fit:

$$L = e^{-N_e} \prod_{i=1}^{N} p(\varphi_S^i, \varphi_h^i; a_1 \cdots a_m)$$

with N: number of hadrons N_e : expected number of hadrons $(a_1 \dots a_m)$ the unknown parameters p: probability density of the sampling variables Φ_s and Φ_h

$$\int \int p(\varphi_S \varphi_h; a_1 \cdots a_m) d\varphi_S d\varphi_h = N_e(a_1 \cdots a_m)$$

p parametrization contains the single hadron cross-section

Collins Asymmetries - Proton Data

COMPASS 2007 proton data

Asymmetries different from 0 for valence region

- asymmetries of opposite sign for positive and negative hadrons
- systematic errors: 0.5 σ_{stat}
- small asymmetries, compatible with 0 at small x_{bi}

Collins Asymmetries - Proton Data

Comparison with predictions of Anselmino et al.:

Collins Asymmetries – Comparison with HERMES

same strength and sign as HERMES

Collins Asymmetries - Deuteron Data

COMPASS: 2002-2004

- small asymmetries, compatible with 0
- only statistical errors shown, systematic errors considerably smaller

Final results, all deuteron data: NP B765 (2007) 31-70

Interpretation Collins Deuteron

Small asymmetries \rightarrow cancellation between $\Delta_{T}u(x)$ and $\Delta_{T}d(x)$ Deuteron data \rightarrow access to $\Delta_{T}d(x)$

<u>Phenomenological models</u> can describe data from COMPASS on deuteron, HERMES on proton and BELLE at the same time:

- Vogelsang, Yuan: hep-ph/0507266
- Efremov, Goeke, Schweitzer: hep-ph/0603054
- Anselmino, Prokudin at SPIN 2008

Two Hadron Asymmetries

In the production of hadron pairs one can define the angle ϕ_R and measure an azimuthal asymmetry from the modulation of the numbers of events in $\phi_{RS} = \phi_R - \phi_{S'}$

X. Artru, hep-ph/0207309

Two Hadron Asymmetries – Proton Data

Hadron cuts:

- $Z_{1,2} > 0.1$
- X_{F1,2} > 0.1
- $z_1 + z_2 < 0.9$ (exclusive ρ)
- $R_{T} > 0.07 \text{ GeV/c}$

Statistics after all cuts:

proton target h⁺h⁻ pairs 11.28 · 10⁶

Invariant mass spectra

Two Hadron Asymmetries – Proton Data

Comparison with predictions of Bacchetta (Courtesy of A. Bacchetta):

Comparison with HERMES:

Λ Polarimetry

Λ Polarimetry – Proton Data

Λ Polarimetry – Proton Data

no dependence on x_{bi}

fragmentation function as function of z seems quite small

Summary and Outlook

Results of the COMPASS 2007 proton transverse run:

Collins asymmetry:

- different from 0, compatible with HERMES
- agreement with predictions of Anselmino et al.
- → access to transversity!

Sivers asymmetry:

- compatible with 0 within present statistical errors in difference to Hermes for h⁺
- to be understood

Two Hadron Asymmetries

- different from 0, signal stronger than HERMES

Λ Polarization

- fragmentation function as function of z seems quite small

• Near future:

- identified hadrons
- further transverse data taking (2010)

Just in case...

Systematic Studies

Several systematics tests have been performed:

Splitting of the target into sectors:

- 1. Left right
- 2. Up down

False asymmetries test:

1. Combining cells with the same polarization

Target split: different target sectors

- 1. Combining half upstream target cells (conf 0)
- 2. Combining half downstream target cells (conf 1)

Different methods for asymmetry extraction

1. 5 different methods

Asymmetry Extraction

Separation of acceptance and spin dependent modulations:

Coupling of two cells (u, d) with opposite polarization ($\uparrow\downarrow$) and two periods (p1, p2) with opposite target polarization

Reasonable assumption:

$$\frac{a_{ju}^{\uparrow}}{a_{ju}^{\downarrow}} = C \frac{a_{jd}^{\downarrow}}{a_{jd}^{\uparrow}}$$

4 • 64 = 256 nonlinear equations $(\vec{f}(\vec{a}))$

 $1 + 8 + 3 \cdot 64 = 201$ fit parameters (\vec{a})

Poisson distribution to account for low statistics: $P_j(\vec{a}) = \frac{f_j(\vec{a})^{N_j} e^{-f_j(\vec{a})}}{N_j!}$ Solution: $max \prod_{i=1}^{256} P_i(\vec{a})$

Solution: $\max \prod_{i=1}^{256} P_i(\vec{a})$

Interpretation Sivers Deuteron

Naïve interpretation of the data (parton model, valence region):

$$A_{Siv}^{d,\pi^+} \simeq A_{Siv}^{d,\pi^-} \simeq \frac{\Delta_0^T u_v + \Delta_0^T d_v}{u_v + d_v}$$

Small asymmetries $\rightarrow \Delta_0^T d_v \simeq -\Delta_0^T u_v$

Data on proton target (HERMES) are different from 0.

→ Summary of phenomenological works by different groups (describing COMPASS and HERMES data) in Anselmino et al.: hep-ph/0511017

measured asymmetry on deuteron compatible with 0 has been interpreted as

Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon S.J. Brodsky, S. Gardner: PLB643 2006 (22)

The approximate cancellation of the SSA measured on a deuterium target suggests that the gluon mechanism, and thus the orbital angular momentums carried by gluons in the nucleon, is small.

Collins – Proton Data: Comparison Release 08 - Reproduction

Interpretation Collins Deuteron

Naïve interpretation of the data (parton model, valence region):

$$A_{Coll}^{d,\pi^{+}} \simeq \frac{\Delta_{T} u_{v} + \Delta_{T} d_{v}}{u_{v} + d_{v}} \frac{4\Delta_{T}^{0} D_{1} + \Delta_{T}^{0} D_{2}}{4D_{1} + D_{2}}$$
$$A_{Coll}^{d,\pi^{-}} \simeq \frac{\Delta_{T} u_{v} + \Delta_{T} d_{v}}{u_{v} + d_{v}} \frac{\Delta_{T}^{0} D_{1} + 4\Delta_{T}^{0} D_{2}}{D_{1} + 4D_{2}}$$

Small asymmetries \rightarrow cancellation between $\Delta_{T}u(x)$ and $\Delta_{T}d(x)$ Deuteron data \rightarrow access to $\Delta_{T}d(x)$

From proton data of Hermes: $\Delta_T^0 D_2 \approx - \Delta_T^0 D_1$

Other Single Spin Asymmetries

More terms are present in the complete SIDIS cross section: 8 transverse target spin dependent asymmetries with different azimuthal dependencies

Other Single Spin Asymmetries

$$\begin{split} F_{LT}^{\cos(\phi_h - \phi_s)} &\propto g_{1T}^q \otimes D_{1q}^h \\ F_{UT}^{\sin(3\phi_h - \phi_s)} &\propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} \\ F_{UT}^{\cos(\phi_s)} &\propto \frac{M}{Q} g_{1T}^q \otimes D_{1q}^h \\ F_{LT}^{\cos(2\phi_h - \phi_s)} &\propto \frac{M}{Q} g_{1T}^q \otimes D_{1q}^h \\ F_{UT}^{\sin(\phi_s)} &\propto \frac{M}{Q} \left(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h \right) \\ F_{UT}^{\sin(2\phi_h - \phi_s)} &\propto \frac{M}{Q} \left(h_1^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h \right) \end{split}$$

Two twist-2 asymmetries can be interpreted in the QCD parton model and will allow to extract unexplored DFs.

The four remaining ones can be interpreted as twist-3 contributions.

Other SSA: Twist-2 - Deuteron

Other SSA: Twist-3 - Deuteron

 \rightarrow All those asymmetries are compatible with 0.

Two Hadron Asymmetries – Proton Data

Two Hadron Asymmetries: Partial Wave Expansion – Proton Data

$$H_{q}^{2h}(z,\cos\theta,M_{h}^{2}) = H_{q,0t}^{2h}(z,M_{h}^{2}) + H_{q,lt}^{2h}(z,M_{h}^{2})\cos\theta$$

A. Bacchetta, hep-ph/0708037

Two Hadron Asymmetries – Deuteron Data

Small asymmetries are expected:

A Polarimetry – Proton Data Event Selection

- Secondary vertex downstream of primary vertex.
- $P_T > 23$ MeV/c to exclude e^+e^- pairs
- Proton and pion momenta > 1 GeV/c
- Q² > 1 (GeV/c)²
- 0.1 < y < 0.9
- Use of RICH (2007 data)
- Λ decay distance $D_{\Lambda} > 7 \sigma_{D}$
- Collinearity < 10 mrad

Λ Polarimetry – Deuteron Data

