Transverse target spin asymmetries on a proton target at COMPASS

Andreas Richter
Physikalisches Institut IV
Universität Erlangen-Nürnberg
on behalf of the COMPASS collaboration

HEP 09, 09/07/18, Krakow, Poland
Transverse Spin Physics

Three distribution functions are necessary to describe the spin structure of the nucleon in LO:

\[q(x) = q_+(x) + q_-(x) \]

momentum distribution

\[\Delta q(x) = q_+(x) - q_-(x) \]

helicity distribution

\[\Delta_T q(x) = q_{\uparrow}(x) - q_{\downarrow}(x) \]

transversity distribution

well known

known

little known
Transverse Spin Physics in SIDIS

For measuring Transversity:
quark spin must flip
\[\Delta_T q(x) \] decouples from inclusive DIS

product of \[\Delta_T q(x) \] and another chiral-odd function needed
\[\Delta_T q(x) \] can be extracted via SIDIS on a transversely polarized target.

Channels measured by COMPASS:
\[l N \rightarrow l' h X \] Collins asymmetry
\[l N \rightarrow l' h h X \] hadron pair asymmetry
\[l N \rightarrow l' \Lambda X \] \(\Lambda \) polarisation
Two steps:
• Scattering of the lepton on the quark (**distribution function**)
• Production of hadrons from the struck quark (**fragmentation function**)

Kinematic variables:
• $Q^2 = -q^2 \approx 4 \frac{E E'}{\sin \theta} \sin \theta/2$ negative four-momentum transfer squared
• $\nu = E - E'$ photon energy
• $x_{bj} = \frac{Q^2}{2M \nu}$ Momentum fraction of struck quark
• $y = \frac{\nu}{E}$ inelasticity
• $z = \frac{E_h}{\nu}$ exclusivity
COMPASS Spectrometer at CERN
(2007 run, proton target)

- high energy beam
- large angular acceptance
- broad kinematical range

Two stage spectrometer:
- large angle spectrometer (SM1)
- small angle spectrometer (SM2)

tracking, calorimetry, PID

beam: 160 GeV/c
intensity: $2 \cdot 10^8 \, \mu^+/\text{spill}$
(4.8 s / 16.8 s)
luminosity: $5 \cdot 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}$
Polarized Proton Target (NH$_3$)

Polarization: $P_T \approx 90\%$

Dilution factor $f \approx 0.15$

3 target cells with opposite polarization

Transverse target polarization: dipole field changed by microwave reversal: once a week
Two important possible azimuthal asymmetries in the distribution of single hadrons in SIDIS on a transversely polarized target are shown:

a) **Collins effect:**
Fragmentation of a transversely polarized quark with finite transverse momentum into a Spin 0 hadron.

\[
A_{\text{Coll}} = \frac{A_C^h}{f \cdot P_T \cdot D_{nn}} = \frac{\sum_q e_q^2 \cdot \Delta_T q \cdot \Delta_0^T D_q h}{\sum_q e_q^2 \cdot q \cdot D_q h}
\]

- **possibility to measure transversity!**

b) **Sivers effect:**
Fragmentation of an "unpolarized" (unknown spin state) quark inside a transversely polarized nucleon.

- **Gives a measure of the correlation between transverse momentum and transverse spin.**

A non-zero Sivers function needs orbital angular momentum of the quarks.

\[
A_{\text{Siv}} = \frac{A_S^h}{f \cdot P_T} = \frac{\sum_q e_q^2 \cdot \Delta_0^T q \cdot D_q h}{\sum_q e_q^2 \cdot q \cdot D_q h}
\]
The Coordinate System

Collins and Sivers terms depend on different combination of angles:

Collins:
\[A_{\text{Coll}} \sim \sin \Phi_C \]
\[\Phi_C = \phi_h - \phi_{S'} = \phi_h + \phi_S - \pi \]

Sivers:
\[A_{\text{Siv}} \sim \sin \Phi_S \]
\[\Phi_S = \phi_h - \phi_S \]

\(\phi_h \): azimuthal angle of the hadron
\(\phi_S \): azimuthal angle of the spin of the initial quark
\(\phi_{S'} \): azimuthal angle of the spin of the fragmenting quark

with \(\phi_{S'} = \pi - \phi_S \) (spin flip)
Data Taking

Statistics after all cuts:

<table>
<thead>
<tr>
<th>2002-04 (deuteron target)</th>
<th>hadrons for Collins</th>
<th>hadrons for Sivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total statistics</td>
<td>$15.5 \cdot 10^6$</td>
<td>$15.5 \cdot 10^6$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2007 (proton target)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>statistics of first results</td>
<td>$11 \cdot 10^6$</td>
<td>$11 \cdot 10^6$</td>
</tr>
<tr>
<td>(Transversity 08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reproduction of data with</td>
<td>$29 \cdot 10^6$</td>
<td>$11 \cdot 10^6$</td>
</tr>
<tr>
<td>improved quality (used for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collins)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for Collins: usable statistics improved by a factor of 3
Data Quality and Systematic Checks

Tests on data for constant detector performance:

1. A dedicated set of quality checks has been developed and applied to satisfy this condition
 - Detector and trigger performances
 - Event reconstruction
 - K⁰ reconstruction
 - Stability of many kinematical variables:
 \[(Z_{\text{vtx}}, E_\mu, \phi_\mu, x_{\text{Bj}} Q^2, y, W, E_{\text{had}}, \phi_{\text{hadLab}}, \theta_{\text{hadLab}}, \phi_{\text{hadGNS}}, \theta_{\text{hadGNS}}, p_T)\]

2. Several systematics tests have been performed:
 - Splitting of the target into sectors
 - False asymmetries tests
 - Different methods for asymmetry extraction
Event Selection

DIS cuts:
- \(Q^2 > 1 \text{ (GeV/c)}^2 \)
- \(0.1 < y < 0.9 \)
- \(W > 5 \text{ GeV/c}^2 \)

Hadron cuts:
- \(z > 0.2 \)
- \(p_T > 0.1 \text{ GeV/c} \)

after cuts: distribution of \(x_{bj} \)
Asymmetry Extraction

Splitting middle cell into two parts
• two pairs of cells with opposite polarization
• two independent values for the asymmetries per period

Extraction: 2D Binned Maximum Log-Likelihood Fit:
8 X 8 grid in ϕ_h and ϕ_s

In each bin $j = \{1, 2, \ldots, 64\}$ one expects N_j counts:

$$N_j^{\uparrow \downarrow} = a_j g_j^{\uparrow \downarrow} (A)$$

with:

- $\uparrow \downarrow$ sign of the target polarization
- a_j acceptance in bin j
- $g_j^{\uparrow \downarrow} (A)$ all 8 spin dependent modulations of the cross section in bin j
Asymmetries compatible with 0 within present statistical errors

Only statistical errors shown, systematic errors: 0.5 σ_{stat}
Sivers Asymmetries Proton Data

Comparison with predictions of Anselmino et al.:
Sivers Asymmetries – Comparison with HERMES

COMPASS 2007 proton data (part.)

preliminary

2 \langle \sin(\phi - \phi_S) \rangle_{UT} \quad \pi^+

2 \langle \sin(\phi - \phi_S) \rangle_{UT} \quad \pi^-

HERMES: arxiv:0906.3918
Sivers Asymmetries Deuteron Data

- small asymmetries, compatible with 0
- only statistical errors shown, systematic errors considerably smaller

Final results, all deuteron data: NP B765 (2007) 31-70

the result was interpreted as a strong indication for cancellation of u and d quark Sivers function
Reproduced Data

- Reproduction with improved quality
- Improved quality checks
- Increased systematic checks

Instabilities of the spectrometer in the first part of the run

→ for Sivers: extraction for full 2007 data difficult

Asymmetry extraction:
Extended Unbinned Maximum Likelihood Fit:

\[L = e^{-N_e} \prod_{i=1}^{N} p(\phi_S^i, \phi_h^i; a_1 \cdots a_m) \]

with

- \(N\): number of hadrons
- \(N_e\): expected number of hadrons
- \((a_1 \cdots a_m)\): the unknown parameters
- \(p\): probability density of the sampling variables \(\Phi_S\) and \(\Phi_h\)

\[\int \int p(\phi_S, \phi_h; a_1 \cdots a_m) d\phi_S d\phi_h = N_e(a_1 \cdots a_m) \]

\(p\) parametrization contains the single hadron cross-section
Collins Asymmetries - Proton Data

Asymmetries different from 0 for valence region

- asymmetries of opposite sign for positive and negative hadrons
- systematic errors: $0.5 \, \sigma_{\text{stat}}$
- small asymmetries, compatible with 0 at small x_{bj}
Collins Asymmetries - Proton Data

Comparison with predictions of Anselmino et al.:
Collins Asymmetries – Comparison with HERMES

COMPASS 2007 transverse proton data

- $h^+ \text{ COMPASS, } x > 0.05$
- $h^+ \text{ COMPASS, } x \leq 0.05$
- $\pi^+ \text{ HERMES (Dnn corr.)}$

Dnn not approved by HERMES; approximated with $\langle y \rangle$

HERMES: arxiv:0706.2242

→ same strength and sign as HERMES
Collins Asymmetries - Deuteron Data

- small asymmetries, compatible with 0
- only statistical errors shown, systematic errors considerably smaller

Final results, all deuteron data: NP B765 (2007) 31-70
Interpretation Collins Deuteron

Small asymmetries \rightarrow cancellation between $\Delta_T u(x)$ and $\Delta_T d(x)$

Deuteron data \rightarrow access to $\Delta_T d(x)$

Phenomenological models can describe data from COMPASS on deuteron, HERMES on proton and BELLE at the same time:
- Vogelsang, Yuan: hep-ph/0507266
- Efremov, Goeke, Schweitzer: hep-ph/0603054
- Anselmino, Prokudin at SPIN 2008

Now also possible with COMPASS (d), COMPASS (p) and BELLE.

HERMES (p), COMPASS (d), BELLE

global fit

Soffer bound
Two Hadron Asymmetries

In the production of hadron pairs one can define the angle ϕ_R and measure an azimuthal asymmetry from the modulation of the numbers of events in $\Phi_{RS} = \phi_R - \phi_{S'}$.

\[\Phi_{RS} = 1 \pm A \cdot \sin \Phi_{RS} \]

\[A_{RS} = \frac{1}{f \cdot P_T \cdot D} \cdot A = \frac{\sum_q e_q^2 \cdot \Delta_T q(x) \cdot H^2_{q}(z, M_h^2)}{\sum_q e_q^2 \cdot q(x) \cdot D^h_{q}(z, M_h^2)} \]

Φ_{RS}: azimuthal angle of R_T

$\phi_{S'} = \pi - \phi_{s'}$: azimuthal angle of the spin of the fragmenting quark

$\vec{p}_h = \vec{p}_1 + \vec{p}_2$

$\vec{R}_T = \frac{z_2 \vec{p}_{1T} - z_1 \vec{p}_{2T}}{z_1 + z_2}$

Transversity distribution function, being measured at BELLE

Interference fragmentation function

A. Bacchetta, M. Radici, hep-ph/0407345
X. Artru, hep-ph/0207309
Two Hadron Asymmetries – Proton Data

Hadron cuts:
- \(z_{1,2} > 0.1 \)
- \(x_{F1,2} > 0.1 \)
- \(z_1 + z_2 < 0.9 \) (exclusive \(\rho \))
- \(R_T > 0.07 \text{ GeV/c} \)

Statistics after all cuts:

Proton target

\(h^+ h^- \) pairs

\(11.28 \cdot 10^6 \)
Two Hadron Asymmetries – Proton Data

Comparison with predictions of Bacchetta (Courtesy of A. Bacchetta):

COMPASS 2007 transverse proton data

Comparison with HERMES:

HERMES: JHEP 0806:017, 2008
\[\Lambda \text{ Polarimetry} \]

Information on \(\Delta_T q(x) \) can be accessed in the process:

\[
\mu \ N^\uparrow \rightarrow \mu' \Lambda^\uparrow X
\]

(analog for \(\overline{\Lambda} \))

N: component of target spin perpendicular to \(p_{\gamma^*} \)

T: symmetric of N wrt. the normal to the scattering plane

\[
P_{T, \text{exp}}^{\Lambda} = \frac{d\sigma^{\mu N^\uparrow \rightarrow \mu' \Lambda^\uparrow X} - d\sigma^{\mu N^\downarrow \rightarrow \mu' \Lambda^\uparrow X}}{d\sigma^{\mu N^\uparrow \rightarrow \mu' \Lambda^\uparrow X} + d\sigma^{\mu N^\downarrow \rightarrow \mu' \Lambda^\uparrow X}} = \int P_N D(y) \sum_q e_q^2 \Delta_T q(x) \Delta_T D_{\Lambda / q}(z)
\]

\(f = \text{target dilution factor}, \ P_N = \text{target polarization}, \ D(y) = \text{virtual photon depolarization factor} \)

\[
\Delta_T D_{\Lambda / q}(z) = D_{\Lambda^\uparrow / q^\uparrow}(z) - D_{\Lambda^\downarrow / q^\downarrow}(z)
\]
Λ Polarimetry – Proton Data

Preliminary COMPASS 2007
transverse proton data (part)

\[\overline{\Lambda} \]

\[N_{\Lambda} \sim 13,600 \]

\[\Lambda \]

\[N_{\Lambda} \sim 27,900 \]
• no dependence on x_{bj}
• fragmentation function as function of z seems quite small
Summary and Outlook

Results of the COMPASS 2007 proton transverse run:

- **Collins asymmetry:**
 - different from 0, compatible with HERMES
 - agreement with predictions of Anselmino et al.
 - access to transversity!

- **Sivers asymmetry:**
 - compatible with 0 within present statistical errors in difference to Hermes for h^+
 - to be understood

- **Two Hadron Asymmetries**
 - different from 0, signal stronger than HERMES

- **Λ Polarization**
 - fragmentation function as function of z seems quite small

- **Near future:**
 - identified hadrons
 - further transverse data taking (2010)
Just in case...
Systematic Studies

Several systematics tests have been performed:

Splitting of the target into sectors:
1. Left right
2. Up down

False asymmetries test:
1. Combining cells with the same polarization

Target split: different target sectors
1. Combining half upstream target cells (conf 0)
2. Combining half downstream target cells (conf 1)

Different methods for asymmetry extraction
1. 5 different methods
Asymmetry Extraction

Separation of acceptance and spin dependent modulations:

Coupling of two cells \((u, d)\) with opposite polarization \((↑↓)\) and two periods \((p1, p2)\) with opposite target polarization

Reasonable assumption:

\[
\frac{a_{ju}^{↑}}{a_{ju}^{↓}} = C \frac{a_{jd}^{↓}}{a_{jd}^{↑}}
\]

\(4 \cdot 64 = 256\) nonlinear equations \(\left(\tilde{f} | \tilde{a}\right)\)

\(1 + 8 + 3 \cdot 64 = 201\) fit parameters \(\tilde{a}\)

Poisson distribution to account for low statistics:

\[
P_j(\tilde{a}) = \frac{f_j(\tilde{a})^N_j e^{-f_j(\tilde{a})}}{N_j !}
\]

Solution:

\[
\max \prod_{j=1}^{256} P_j(\tilde{a})
\]
Interpretation Sivers Deuteron

Naïve interpretation of the data (parton model, valence region):

\[A_{Siv}^{d,\pi^+} \simeq A_{Siv}^{d,\pi^-} \simeq \frac{\Delta_0^T u_v + \Delta_0^T d_v}{u_v + d_v} \]

Small asymmetries \(\rightarrow \)

\[\Delta_0^T d_v \simeq -\Delta_0^T u_v \]

Data on proton target (HERMES) are different from 0.

\(\rightarrow \) Summary of phenomenological works by different groups (describing COMPASS and HERMES data) in Anselmino et al.: hep-ph/0511017

measured asymmetry on deuteron compatible with 0 has been interpreted as

Evidence for the Absence of Gluon Orbital Angular Momentum in the Nucleon

S.J. Brodsky, S. Gardner: PLB643 2006 (22)

The approximate cancellation of the SSA measured on a deuterium target suggests that the gluon mechanism, and thus the orbital angular momentums carried by gluons in the nucleon, is small.
Naïve interpretation of the data (parton model, valence region):

\[
A_{Coll}^{d,\pi^+} \approx \frac{\Delta_T u_v + \Delta_T d_v}{u_v + d_v} \frac{4\Delta_T^0 D_1 + \Delta_T^0 D_2}{4D_1 + D_2}
\]

\[
A_{Coll}^{d,\pi^-} \approx \frac{\Delta_T u_v + \Delta_T d_v}{u_v + d_v} \frac{\Delta_T^0 D_1 + 4\Delta_T^0 D_2}{D_1 + 4D_2}
\]

Small asymmetries → **cancellation between** $\Delta_T u(x)$ **and** $\Delta_T d(x)$

Deuteron data → **access to** $\Delta_T d(x)$

From proton data of Hermes: $\Delta_T^0 D_2 \approx - \Delta_T^0 D_1$
Other Single Spin Asymmetries

More terms are present in the complete SIDIS cross section: 8 transverse target spin dependent asymmetries with different azimuthal dependencies.

\[
\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ \right. \\
+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\
+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \\
+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\
+ |S_{\perp}|\lambda_c \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} \\
+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\},
\]

Sivers

Collins

6 further asymmetries
Other Single Spin Asymmetries

Two twist-2 asymmetries can be interpreted in the QCD parton model and will allow to extract unexplored DFs.

The four remaining ones can be interpreted as twist-3 contributions.
Other SSA: Twist-2 - Deuteron

\[F_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h \]

\[F_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^q \otimes H_{1q}^h \]
Other SSA: Twist-3 - Deuteron

$F_{UT}^{\sin(\phi_s)} \propto \frac{M}{Q} \left(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h \right)$

$F_{UT}^{\sin(2\phi_h - \phi_s)} \propto \frac{M}{Q} \left(h_1^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h \right)$

→ All those asymmetries are compatible with 0.
Two Hadron Asymmetries
– Proton Data

$\sin \theta$ can be neglected
Two Hadron Asymmetries: Partial Wave Expansion – Proton Data

\[H^L_h(z, \cos \theta, M_h^2) = H^L_{q,0t}(z, M_h^2) + H^L_{q,lt}(z, M_h^2) \cos \theta \]

A. Bacchetta, hep-ph/0708037

\[\langle \cos \theta \rangle = 0.01 \]
Small asymmetries are expected:

(Radici/Bacchetta, PRD74(2006)114007)
Λ Polarimetry – Proton Data
Event Selection

- Secondary vertex downstream of primary vertex.
- $P_T > 23$ MeV/c to exclude e^+e^- pairs
- Proton and pion momenta > 1 GeV/c
- $Q^2 > 1 \text{ (GeV/c)}^2$
- $0.1 < y < 0.9$
- Use of RICH (2007 data)
- Λ decay distance $D_\Lambda > 7 \sigma_D$
- Collinearity < 10 mrad
Λ Polarimetry – Deuteron Data

All 2002–2004 transversity data
$Q^2 > 1 \text{ (GeV/c)}^2$
$0.1 < y < 0.9$

Preliminary

All 2002–2004 transversity data
$Q^2 > 1 \text{ (GeV/c)}^2$
$0.1 < y < 0.9$

Preliminary

All 2002–2004 transversity data

All Q^2
$0.1 < y < 0.9$

Preliminary

All 2002–2004 transversity data

All Q^2
$0.1 < y < 0.9$

Preliminary