

Study of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)}$ and $B_s \rightarrow \phi \phi$ Decays at CDF II

Dominik Horn University of Karlsruhe

On behalf of the CDF Collaboration

EPS HEP Krakow, July 16, 2009

Some of the Challenging Questions in *B_s* Physics

- New Physics (NP) in B_s mixing?
 - Measurement of the CP violating phase φ_s = 2β_s based on an angular- and time-dependent analysis of B_s → J/ψφ (J. Morlock's talk)
- $\Delta\Gamma_s = \Gamma_s^L \Gamma_s^H$ sizable as predicted in standard model (SM)?
 - Constrain $\Delta \Gamma_s^{CP} / \Gamma_s$ by measuring the branching fractions of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)}$ (this talk)
- ▶ NP in $b \rightarrow s$ penguin transitions and/or B_s mixing?
 - Measure Branching fraction of $B_s \rightarrow \phi \phi$ (this talk)
 - ▶ Polarization measurement in $B_s \rightarrow \phi \phi$ (near future)
 - ► Test of new physics contributions to the vanishing weak phase $\phi_s(B_s \rightarrow \phi \phi)$ (future)

Introduction

 $B_s \to D_s^{+(*)} D_s^{-(*)}$ Analysis

 $B_{s} \rightarrow \phi \phi$ Analysis

Conclusion and Outlook

Backup

Study of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)}$ and $B_s \rightarrow \phi \phi$ at CDF II $\square_{B_s} \rightarrow D_s^{+(*)} D_s^{-(*)}$ Analysis $\square_{Motivation}$

Motivation

- SM: Decay governed by tree level b → cc̄s transition
- Sizable ΔΓ_s = Γ^L_s − Γ^H_s predicted in SM
- Assuming Γ₁₂ receives its dominant contribution from b → cc̄s transitions:

 $\Rightarrow \Delta \Gamma_{\rm S} = \Delta \Gamma_{\rm S}^{\rm CP} \cos \phi_{\rm S}$

Assuming that the preferred final state of $b\bar{s} \rightarrow c\bar{c}s\bar{s}$ is $D_s^{+(*)}D_s^{-(*)}$ and that this has a defined, predominantly even *CP* content:

 $\Rightarrow 2\mathcal{B}[\textit{B}_{s} \rightarrow \textit{D}_{s}^{+(*)}\textit{D}_{s}^{-(*)}] \cong \Delta \Gamma_{s}^{\textit{CP}}/\Gamma_{s}^{-1}$

¹I. Dunietz, R. Fleischer, U. Nierste, In Pursuit of New Physics with B_s Decays, arxiv:hep-ph/0012219 (2001)

Study of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)}$ and $B_s \rightarrow \phi \phi$ at CDF II $\Box_{B_s} \rightarrow D_s^{+(*)} D_s^{-(*)}$ Analysis \Box Existing Measurements

Existing Measurements

- ▶ DØ (2.8 fb⁻¹)²: Evidence for $B_s \rightarrow D_s^{+(*)}(\phi \pi) D_s^{-(*)}(\phi \mu \nu)$ using semi-leptonic, semi-inclusive reconstruction
 - About 27 signal events
 - $\mathcal{B}[B_s \to D_s^{+(*)}D_s^{-(*)}] = 0.035 \pm 0.010(stat) \pm 0.011(syst)$
 - $\blacktriangleright \Rightarrow \Delta \Gamma_{CP} / \Gamma = 0.072 \pm 0.021 (stat) \pm 0.022 (syst)$
- ► CDF (355 pb⁻¹)³: Observation of $B_s \rightarrow D_s^+(\phi \pi) D_s^-(\phi \pi; K^{0*}K^-; 3\pi)$, exclusive hadronic reconstruction
 - About 24 signal events
 - $\mathcal{B}[B_s \to D_s^+ D_s^-] = 0.0094^{+0.0044}_{-0.0042}$
 - $\Rightarrow \Delta \Gamma_{CP} / \Gamma > 0.012$ at 95% C.L.

 $^2\text{DØ}$ Collaboration, Evidence for the Decay $B_s\to D_s^{+(*)}D_s^{-(*)}$ and a Measurement of $\Delta\Gamma_s^{CP}/\Gamma$, PRL 102, 091801 (2009)

 ^3CDF Collaboration, First Observation of the Decay $B_s\to D_s^+D_s^-$ and Measurement of its Branching Ratio, PRL 100, 021803 (2008)

Study of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)}$ and $B_s \rightarrow \phi \phi$ at CDF II $\bigsqcup_{B_s \rightarrow D_s^{+(*)} D_s^{-(*)}}$ Analysis $\bigsqcup_{Ongoing Analysis}$

Ongoing Analysis

- Currently repeating branching fraction measurement on up to 4 fb⁻¹ using same hadronic decay modes
- Makes additionally use of PID and neural networks for optimized candidate selection

- In addition to $\mathcal{B}[B_s \to D_s^+ D_s^-]$ we will be able to also measure $\mathcal{B}[B_s \to D_s^{+(*)} D_s^{-(*)}]$ separately
- Given sufficient statistics, lifetime measurements might offer additional insights on ΔΓ_s

Introduction

- $B_s
 ightarrow D_s^{+(*)} D_s^{-(*)}$ Analysis
- $B_{s} \rightarrow \phi \phi$ Analysis
- **Conclusion and Outlook**

Backup

Study of $B_s \to D_s^{+(*)} D_s^{-(*)}$ and $B_s \to \phi \phi$ at CDF II $\Box_{B_s} \to \phi \phi$ Analysis $\Box_{Motivation}$

Motivation

Self-conjugate $B_s \rightarrow VV$ decay

 Dominant decay process in SM: b → sss penguin transition

- Provides opportunity for several interesting checks:
 - Test of SM branching fraction expectation
 - Potential probe of CP-violating phases in penguin decay and/or mixing by ΔΓ_s measurement
 - Check polarization predictions, compare to decays like $B^0 \rightarrow \phi K^*$

Study of
$$B_{
m S} o D_{
m S}^{+(*)} D_{
m S}^{-(*)}$$
 and $B_{
m S} o \phi \phi$ at CDF II

 $-B_{s} \rightarrow \phi \phi$ Analysis

- Data sample of 180 pb⁻¹
- 8 signal events seen

• $\mathcal{B}[B_{s} \to \phi \phi] = [1.4 \pm 0.6(stat) \pm 0.6(syst)] \cdot 10^{-5}$

► Theoretical estimation⁴: $\mathcal{B}[B_{s} \to \phi \phi] = [2.18^{+0.11+3.04}_{-0.11-1.7}] \cdot 10^{-5}$

 $^4\textsc{Beneke}$ at al., Branching fractions, polarization and asymmetry in $B\to VV$ decays (2006)

⁵CDF Collaboration, Evidence for $B_s \rightarrow \phi \phi$ decay and Measurements of Branching Ratio and A_{CP} for $B_+ \rightarrow \phi K^+$, PRL 95, 031801 (2005) $-B_{s} \rightarrow \phi \phi$ Analysis

-New Branching Fraction Measurement

$B_s \rightarrow \phi \phi$ Reconstruction and Selection

- ► Due to similar decay topology and to suppress systematics, branching fraction measured in ratio to $\mathcal{B}[B_s \rightarrow J/\psi\phi]$
- Decays reconstructed in φ → K⁺K⁻ and J/ψ → µµ using Two Track Trigger data sample corresponding to 2.9 fb⁻¹
- For J/ψ → µµ positive identification of at least 1 muon is required to obtain best compromise between signal to background ratio and suppression of J/ψ → ee
- Cut based optimization procedure geared towards maximizing S = N_S/√N_S + N_B
- Uses kinematic variables like L_{xy} , χ^2_{xy} , p_T , d0
- Still room for improvements by using PID

Signal Yields

 Binned maximum likelihood fit using signal shape and physics background shapes from MC, empirical exponential function for combinatoric background

 $-B_s \rightarrow \phi \phi$ Analysis

-New Branching Fraction Measurement

Branching Fraction Result

$$\frac{\mathcal{B}[B_{s} \to \phi\phi]}{\mathcal{B}[B_{s} \to J/\psi\phi]} = \frac{N_{\phi\phi}}{N_{J/\psi\phi}} \cdot \frac{\epsilon_{rec}^{J/\psi\phi}}{\epsilon_{tot}^{\phi\phi}} \cdot \frac{\mathcal{B}[J/\psi \to \mu\mu]}{\mathcal{B}[\phi \to KK]} \cdot \epsilon_{tot}^{\mu}$$

- $\epsilon_{rec}^{J/\psi\phi}/\epsilon_{tot}^{\phi\phi} = 0.939 \pm 0.030$: ratio of combined trigger and selection efficiencies determined on MC
- ► $\epsilon^{\mu} = \epsilon^{\mu}_{tot} = 0.8695 \pm 0.0044$: muon identification efficiency evaluated on $J/\psi \rightarrow \mu\mu$ data
- Relative branching fraction:

 $\frac{\mathcal{B}[B_s \to \phi\phi]}{\mathcal{B}[B_s \to J/\psi\phi]} = [1.78 \pm 0.14(stat) \pm 0.20(syst)] \cdot 10^{-2}$

Absolute branching fraction:

 $\mathcal{B}[B_{s} \rightarrow \phi \phi] = [2.40 \pm 0.21(stat) \pm 0.27(syst) \pm 0.82(BR)] \cdot 10^{-5}$

Conclusion and Outlook

- This talk presented two interesting ongoing analyses of B_s decays at CDF
- ► Analysis of $B_s \rightarrow D_s^{+(*)} D_s^{-(*)}$ under way, intermediate results promising
- ► Measurement of B[B_s → φφ] yields a reduction of factor 3 in statistical uncertainty
- B[B_s → φφ] analysis represents valuable preparative step towards polarization measurement
- Tevatron will certainly run up to October 2010
 - Several additional fb⁻¹ will be available to CDF in the near future
 - Additional enhancements in the measurements are to be expected

Introduction

- $B_s
 ightarrow D_s^{+(*)} D_s^{-(*)}$ Analysis
- $B_{s} \rightarrow \phi \phi$ Analysis

Conclusion and Outlook

Backup

The Collider Detector at Fermilab (CDF)

Multi-purpose detector at the pp
collider Tevatron (√s = 1.96 TeV)

- Cylindrical and forward-backward symmetrical setup of detector components
- Charged particle tracking system with high resolution
 - Silicon microstrip detector system (L00, SVXII, ISL)
 - Drift chamber (COT)
 - Muon chambers

Backup

The Two Track Trigger (TTT)

- Three-level online trigger logic for identification of hadronic decays from heavy flavour particles
- Combines and processes information from the tracking system
- Selects two displaced charged tracks, requiring:
 - Transverse momentum p_T > 2 GeV/c
 - Impact parameter 0.12 mm
 - $\leq \textit{d}_0 \leq 1 \text{ mm}$
 - Opening angle $2^{\circ} \leq \Delta \phi \leq 90^{\circ}$
 - Decay length L_{xy} > 200 µm

 Adjusting of data taking to different luminosity scenarios by applying prescale factors to different TTT subpaths

Backup

Combined Trigger and Selection Efficiencies

- Evaluated using Monte Carlo, in principle: $\epsilon = N_{MC}^{rec} / N_{MC}^{gen}$
- However, some effects have to be accounted for:
 - Datasets consist of an admixture of three different trigger subpaths
 - Prescale factors for different TTT subpaths not identical in data and MC
 - $p_T^{B_s}$ spectrum not the same in data and MC
- Therefore:
 - ► Based on data/MC comparison in $B_s \rightarrow J/\psi \phi$ MCs are reweighted
 - ► ϵ_i, i = 1, 2, 3, are calculated separately and summed up using adjusted prescale factors
- This gives an effective efficiency ratio:

 $\epsilon_{\it rec}^{J/\psi\phi}/\epsilon_{\it tot}^{\phi\phi}=0.939\pm0.030(\it stat)$

Backup

Muon Efficiency in $B_s \rightarrow J/\psi \phi$

- Evaluated separately on data itself (signal region) since MC not fully reliable for simulation of muon detectors
- *ϵ^μ_{tot}* calculated as a function of *p^μ_T* in two pseudo-rapidity regions and assuming efficiencies for first and second muon being uncorrelated

► Per event efficiency for reconstructing at least 1 muon: $\epsilon_{tot}^{\mu} = 0.8695 \pm 0.0044(stat)$

Systematics

- Considered systematic uncertainty on...
 - number of signal events due to fit mass range and signal parameterization
 - background subtraction
 - muon efficiency
 - ratio of trigger and selection efficiencies due to effects not considered in MC simulation
 - branching fraction of the normalization channel $B_{
 m s}
 ightarrow J/\psi \phi$
- Gives a total relative uncertainty of 11% (systematics) and 34% (BR)