Recent results on twophoton physics at BABAR

V. Druzhinin (BINP,Novosibirsk) for BaBar Collaboration

I. $\gamma^* \gamma \rightarrow \pi^0$ II. $\gamma^* \gamma \rightarrow \eta_c$

Two-photon reaction $e^+ e^- \rightarrow e^+ e^- P$

• Electrons are scattered predominantly at small angles. • For pseudoscalar meson production the cross section depends on only one form factor $F(q_1^2, q_2^2)$, which describes the $\gamma^*\gamma^* \rightarrow P$ transition.

No-tag mode: \checkmark both electrons are undetected $\checkmark q_1^2, q_2^2 \approx 0$ $\checkmark \Gamma \gamma \gamma \text{ or F(0,0)}$ Single-tag mode: \checkmark one of electrons is detected $\checkmark Q^2 = -q_1^2 = 2EE^{/}(1 - \cos \theta),$ $\checkmark d\sigma/dQ^2 \sim 1/Q^6$ for π^0 $\checkmark F(Q^2, 0)$

Two-photon reaction $e^+ e^- \rightarrow e^+ e^- P$

x is the fraction of the meson momentum carried by one of the quarks

✓ electron is detected and identified
 ✓ π⁰ or η_c are detected and fully reconstructed
 ✓ electron + meson system has low p_⊥
 ✓ missing mass in an event is close to zero

$e^+e^- \rightarrow e^+e^-\pi^0$

B.Aubert et al., arXiv:0905.4778, submitted to PRD

- The main non-resonant background is virtual Compton scattering, the process $e^+e^- \rightarrow e^+e^-\gamma$ with one of the final electrons directed along the beam axis.
- The peaking background comes $e^+e^- \rightarrow e^+e^-\pi^0 \pi^0$, about 10% of signal events.

/2	Events	Year
2	127	1991
C	1219	1998
	13200	2009

 $e^+e^- \rightarrow e^+e^-\pi^0$

The data were divided into 17 Q² intervals.

$e^+e^- \rightarrow e^+e^-\pi^0$, cross section

Systematic uncertainty independent on Q² is 3%.

$e^+e^- \rightarrow e^+e^-\pi^0$, form factor

Systematic uncertainty

independent on Q^2 is 2.3%.

✓ In Q² range 4-9 GeV² our results are in a reasonable agreement with CLEO data but have significantly better accuracy.

At Q²>10 GeV² the measured form factor exceeds the asymptotic limit $\sqrt{2}f_{\pi}=0.185$ GeV. Most models for the pion distribution amlitude give form factors approaching the limit from below.

✓ Our data in the range 4-40 GeV² are well described by the formula

$$Q^2|F(Q^2)| = A\left(\frac{Q^2}{10 \text{ GeV}^2}\right)^\beta$$

with A=0.182 \pm 0.002 GeV and β =0.25 \pm 0.02, i.e. F~1/Q^{3/2}.

$e^+e^- \rightarrow e^+e^-\pi^0$, comparison with theory

N.G.Stefanis, Phys. Rev. D 67, 074012, light-cone sum rule method at NLO pQCD+twist-4 power corrections.

✓ Q²<20 GeV² : large difference between the data and the theory in Q^2 dependence. The model is inadequate for $Q^2 < 15$ GeV.

✓ Q^2 > 20 GeV² : theoretical uncertainties are expected to be smaller. Our data lie above the asymptotic limit and are consistent with the CZ model.

$e^+e^- \rightarrow e^+e^-\pi^0$, after publication

- S.V.Mikhailov and N.G.Stefanis, arXive:0905.4004, the growth of the form factor cannot be explained by NNLO pQCD corrections and power corrections
- A.V. Radyuskin, arXive:0906.0323; M.V.Polyakov, arXive:0906.0538;
 H.N.Li and S.Mishima, arXive:0907.0166. The flat pion distribution amplitude is used to reproduce Q² dependence of BABAR data.

V.Druzhinin

$e^+e^- \rightarrow e^+e^-\eta_c$, no-tag mode

- •The sources of non-resonant background are two photon and ISR processes.
- •The peaking background is $e^+e^- \rightarrow J/\psi\gamma$, $J/\psi \rightarrow \eta_c\gamma \rightarrow K_S K^+\pi^-\gamma$. It is calculated from the fitted number of $J/\psi \rightarrow K_S K^+\pi$ events. 4%.

	Mass, MeV	Width,MeV
PDG	2980.3±1.2	26.7±3.0
BABAR(88 fb ⁻¹)	2982.5±1.1±0.9	34.3±2.3±0.9
BABAR(470 fb ⁻¹), preliminary	2982.2±0.4±1.5	31.7±1.2±0.8

- Main sources of systematic uncertainties are unknown background shape and possible interference η_c and non-resonant two-photon amplitudes.
- $N(\eta_c)=13890\pm320\pm670$
- BABAR preliminary: $\Gamma(\eta_c \rightarrow \gamma \gamma) B(\eta_c \rightarrow KK\pi) = 0.379 \pm 0.009 \pm 0.031 \text{ keV}$ PDG: 0.44±0.04 keV, CLEO: 0.407±0.022±0.028 keV

$e^+e^- \rightarrow e^+e^- \eta_c$, single-tag mode

m=2985.7 \pm 2.0 MeV/c² Γ =31.9 \pm 4.3 MeV N=530 \pm 41 \pm 17

Peaking background from $e^+e^- \rightarrow e^+e^- J/\psi$, $J/\psi \rightarrow \eta_c \gamma \rightarrow K_S K^+\pi^- \gamma$ is calculated from the fitted number of $J/\psi \rightarrow K_S K^+\pi^$ events. It changes from about 1% at Q²<10 GeV² to about 5% at Q²≈30 GeV²

$e^+e^- \rightarrow e^+e^-\eta_c$, single-tag mode

$e^+ e^- \rightarrow e^+ e^- \eta_c$, cross section

Systematic uncertainty independent on Q² is 6.7%.

$e^+e^- \rightarrow e^+e^-\eta_c$, form factor

✓ The form factor is normalized to F(0) obtained from no-tag data

✓ We fit the function $F(Q^2) = \frac{F(0)}{1+Q^2 / \Lambda}$

to the form factor data. The result

 Λ =8.5±0.6±0.7 GeV²

 $\begin{array}{ccc} 40 & 50 \\ Q^2 \, (GeV^2) \end{array}$ does not contradict the vector dominance model with

Systematic uncertainty independent on Q² is 4.3%.

 $\Lambda = m^2_{J/\psi} = 9.6 \text{ GeV}^2.$

✓ Our data lie below the leading-order pQCD calculation (T. Feldmann, P.Kroll, Phys. Lett. B 413, 410 (1997))

Summary

- The γ^{*}γ→π⁰ transition form factor has been measured for Q² range from 4 to 40 GeV²
- The unexpected Q² dependence of form factor is observed for Q²>10 GeV². The data lie above the asymptotic limit. This indicates that pion distribution amplitude should be wide.
- This measurement stimulated development of new models for form-factor calculation.
- The $\gamma^*\gamma \rightarrow \eta_c$ form factor has been measured for Q² range from 2 to 50 GeV²
- The form factor data are well described by the monopole form with Λ=8.6±0.6±0.7 GeV².The data are in reasonable agreement with both QCD and VDM predictions.

BACKUP SLIDES

$e^+e^- \rightarrow e^+e^-\pi^0$, detection efficiency

- Due to asymmetry of e⁺e⁻ collision the Q² region below 7 GeV² is measured only with positron tag
 We measure the cross section from Q² > 4 GeV² to avoid possible systematic error due to data-MC difference near the edges of the detector
- The average π^{0} energy grows with Q². This leads to decrease of the detection efficiency for Q² > 10 GeV²

$e^+e^- \rightarrow e^+e^-\pi^0$, total efficiency correction

Total systematic error independent on Q² is 2.5% and includes

- 1% π^{o} losses,
- 2% trigger efficiency,

• 1% -
$$\cos \theta_{e\pi}$$
 cut.

$e^+e^- \rightarrow e^+e^- \eta_c$, detection efficiency

- Due to asymmetry of e⁺e⁻ collision the Q² region below 6 GeV² is measured only with positron tag
- We measure the cross section from $Q^2 = 2 \text{ GeV}^2$ where the efficiency is about 2%.
- •For no-tag events the efficiency is (14.5±0.2)%
- •Data Dalitz plot distribution is used to reweight MC events. The shift of efficiency is small, $(-1.1\pm1.6)\%$.

$e^+e^- \rightarrow e^+e^- \eta_c$, systematic uncertainty

Source	No-tag, $\%$	Single-tag, $\%$
trigger, filters	1.2	_
η_c selection	5.9	5.7
track reconstruction	1.4	1.5
K^{\pm} identification	0.4	0.5
e^{\pm} identification	_	1.0
total	6.2	6.0

- To estimate systematic uncertainty due to selection criteria we change
 - K_S mass window: 0.4875-0.5075 \Rightarrow 0.475-0.52
 - Limit on transverse momentum: 0.25 \Rightarrow 0.5
 - 0.387< θ <2.4 for kaon and pions
 - -0.02<r<0.03 \Rightarrow -0.02<r<0.06
- The significant (~6%) effect is observed for change of angular restrictions.

