Jets and α_s Measurements at HERA

Jörg Behr
(Hamburg University / DESY)

On Behalf of the H1 and ZEUS Collaborations
The 2009 Europhysics Conference on High Energy Physics
Krakow, July 2009

Outline:

1. Jet Production at HERA and Technicalities
2. Inclusive Jets in Photoproduction
3. Inclusive Jets at Low Q^2
4. Inclusive- and Multi-Jets at High Q^2
5. Summary
Electron-Proton Collisions at HERA:
\[\sqrt{s} = 318 \text{ GeV} \leftarrow \text{center of mass energy} \]

Kinematic Variables:

- \[Q^2 = - (k - k')^2 \leftarrow \text{virtuality of exchanged boson} \]
- \[x = \frac{Q^2}{p \cdot q} \leftarrow \text{Bjorken scaling variable} \]
- \[y = \frac{Q^2}{s \cdot x} \leftarrow \text{inelasticity parameter} \]

\[Q^2 = s \cdot x \cdot y \]
Jet Production at HERA

Kinematic Regimes:
1. photoproduction (γp): $Q^2 \approx 0$ GeV2
2. deep inelastic scattering (DIS): $Q^2 > 1$ GeV2

Jet cross section in pQCD: Series expansion in powers of α_s

$$\sigma_{\text{jet}} = \sum_m \alpha_s^m (\mu_R) \sum_{a=q, \bar{q}, g} f_{a/p} (x, \mu_F) \otimes \hat{\sigma}_{a,m} (x, \mu_R, \mu_F) (1 + \delta_{\text{had}}) \ldots$$

Coefficients are convolutions of:
- parton distribution functions (PDFs) $f_{a/p}$ (and of γ-PDF in case of γp)
- hard scattering matrix element $\hat{\sigma}$

Measurement:
- test concept of pQCD, factorization, universality of strong coupling and PDFs
- using factorization, pQCD \rightarrow extraction of α_s, PDFs
The Breit Frame in DIS

the Breit frame is suitable for studying QCD with high E_T jets

- exchanged boson space-like
- **struck quark in Born level has zero** E_T (no QCD involved)
- directly sensitive to hard QCD processes → E_T can be used for identification
- suppression of beam remnant jet

- **jets are reconstructed in the Breit frame** using the k_\perp cluster algorithm
 → infrared and collinear safe
- data are corrected for detector, QED, electro-weak effects with MC models
- NLO predictions are corrected for parton shower and hadronisation effects

ZEUS: Inclusive Jets in Photoproduction (1/2)

Previous Publication:
- data (98-00) with 82 pb^{-1} luminosity
- α_s extracted from $\frac{d\sigma}{dE_T}$

 $$\alpha_s (M_Z) = 0.1224 \pm 0.0001 \text{ (stat.)}$$
 $$\pm 0.0022 \text{ (exp)}$$
 $$\pm 0.0054 \text{ (th)}$$

- theory error dominates (4.2%) over experimental error ($\approx 1.7\%$)

α_s from re-analysis (same data):
- theory:
 - $O(\alpha_s^2)$: Klasen, Kleinwort, Kramer
 - MRST2001 (previously: MRST99)
 - photon PDFs: GRV-HO
 - $\mu_R = \mu_F = E_T^{\text{jet}}$ for each jet
- new method for μ_R variation (Jones et al.)

- good data description by NLO prediction!
ZEUS: Inclusive Jets in Photoproduction (2/2)

α_s Extraction:

- pQCD calculations depend on α_s via the partonic cross section and the PDFs.
- NLO calculations using various sets of PDFs with different assumed α_s were performed.
- Parametrize $\alpha_s(M_Z)$ dependence of observable $d\sigma/dA$ in bin i according to

$$\frac{d\sigma_i}{dA} = C_1 \cdot \alpha_s(M_Z) + C_2 \cdot \alpha_s^2(M_Z)$$

- Map measured $d\sigma/dA$ to x-axis and extract $\alpha_s(M_Z)$

\[\Rightarrow \text{complete α_s dependence of the calculations and the PDFs is preserved! (matrix elements and PDF evolution)}\]

- $\alpha_s(M_Z) = 0.1223 \pm 0.0001(\text{stat.})^{+0.0023}_{-0.0021}(\text{sys.}) \pm 0.0030(\text{th.})$

\[\Rightarrow \text{very precise α_s determination with 3.1% total error!}\]
H1: Inclusive Jet Production at Low Q^2 (1/3)

- **DIS at low Q^2:**
 - lots of statistic
 - electron in backward region
 - natural place to look first
- **but:** reliability of pQCD at NLO with decreasing Q^2 or E_T?

- used integrated luminosity: 44 pb^{-1}
- $5 < Q^2/\text{GeV}^2 < 100$
- $E_{T,\text{Breit}} > 5 \text{ GeV}$
- inclusive jet and dijet measurement

Main Sources of Experimental Systematical Uncertainties:

1. hadronic energy scale uncertainty
 - $\Delta \sigma / \sigma \approx 4 - 10\%$
2. acceptance correction uncertainty
 - $\Delta \sigma / \sigma \approx 2 - 15\%$
H1: Inclusive Jet Production at Low Q^2 (2/3)

- larger NLO errors compared to data uncertainties
- good data description by NLO predictions within errors!

\[\frac{d^2 \sigma}{dQ^2 dE_T} \]

5 < Q^2 < 7 GeV2

7 < Q^2 < 10 GeV2

10 < Q^2 < 15 GeV2

15 < Q^2 < 20 GeV2

20 < Q^2 < 30 GeV2

30 < Q^2 < 40 GeV2

40 < Q^2 < 100 GeV2

- H1 preliminary HERA-I

- NLO*$(1 + \delta_{\text{had}})$

\[\mu_r^2 = (Q^2 + E_T^2)/4, \quad \mu_f^2 = Q^2 \]
Jets and α_s Measurements at HERA

H1: Inclusive Jet Production at Low Q^2 (3/3)

- NLO not very predictive at low Q^2 or E_T because of low scales
- Renormalization scale uncertainty dominates and increases with decreasing Q^2 and at low $E_{T,\text{Breit}}$

→ Orders beyond NLO are needed in theoretical predictions!

α_s Extraction:
- Double differential inclusive jet cross sections
 $$\alpha_s(M_Z) = 0.1186 \pm 0.0014 \text{ (exp.)}$$
 $$+0.0132$$
 $$-0.0101 \text{ (theory)}$$
 $$\pm 0.0021 \text{ (PDF)}$$
- ≈ 1% exp. uncertainty, ≈ 10% theoretical error
ZEUS: Inclusive NC Jets at High Q^2 (1/4)

- Stringent tests of pQCD calculations at high E_T
- Data taken between 2004 - 2006 were used
- Integrated luminosity: 188 pb^{-1}

→ Shown is the single-differential inclusive jet NC cross section as a function of $Q^2 > 125 \text{ GeV}^2$

- Dijet cross sections: see Juan Terron's talk

- Good description of data by NLO QCD over many orders of magnitude (for both $\mu_R = E_{T,B}$ and Q)
- Smaller theoretical uncertainty than dijets, but still dominates over experimental except at high Q^2

Main Sources of Exp. Sys. Uncertainties:

1. Hadronic energy scale uncertainty
 \[\frac{\Delta \sigma}{\sigma} \approx 5\% \]

2. Model dependence of acceptance correction
 \[\frac{\Delta \sigma}{\sigma} \approx 3\% \]
Jörg Behr

Jets and α_s Measurements at HERA

ZEUS: Inclusive NC Jets at High Q^2 (2/4)

- μ_R uncertainty dominates except at high $E_{T,B}$ where the PDF uncertainty is dominant ⇒ potential to further constrain the gluon density in the proton
ZEUS: Inclusive NC Jets at High Q^2 (3/4)

- inclusive jet cross section as a function of η_{Breit}
- $\frac{d\sigma}{d\eta}$ shape is dictated by kinematic constraints
- good agreement between data and NLO for $\frac{d\sigma}{d\eta}$

Diagram:
- ZEUS (prel.) 188.3 pb$^{-1}$
- $E_{T,B} > 8$ GeV
- $Q^2 > 125$ GeV2
- $|\cos \gamma_h| < 0.65$
- jet energy scale uncertainty
- theoretical uncertainty

Graph:
- $d\sigma/d\eta_{\text{B}}$ (pb)
- rel. diff. to NLO
- η_{B}
- σ_{jet}
- ZEUS (prel.) 188.3 pb$^{-1}$
- $E_{T,B} > 8$ GeV
- $Q^2 > 125$ GeV2
- $|\cos \gamma_h| < 0.65$
\(\alpha_s \) Extraction:

- extracted from \(\frac{d\sigma}{dQ^2} \) for \(Q^2 > 500 \text{ GeV}^2 \) ⇒ yields smaller total \(\alpha_s \) error
- experimental uncertainties:
 → largest contribution due to jet energy scale uncertainty (±1.9%)
- theoretical uncertainties:
 → dominated by terms beyond NLO (±1.8%)
 → PDF (±0.8%)
 → hadronisation corrections (±0.8%)

\[\alpha_s (M_Z) = 0.1192 \pm 0.0009 \text{(stat.)}^{+0.0035}_{-0.0032} \text{(exp.)}^{+0.0020}_{-0.0021} \text{(th.)} \]

⇒ precise measurement with a total error of about 3.5%!
data sample with 395 pb^{-1} luminosity

- $150 < Q^2 / \text{GeV}^2 < 15000$
- single inclusive, 2- and 3-jet cross sections were measured
- normalization to the inclusive neutral current DIS scattering cross section
 - luminosity uncertainty cancels and energy scale uncertainty reduces in normalized cross sections
- data are well described by NLO predictions!
Dijet Production:

- momentum fraction carried by the interacting parton:
 \[\xi = x_{Bj} \cdot \left(1 + \frac{M_{12}^2}{Q^2}\right) \]

- normalised dijet cross sections as a function of \(\xi \) in several regions of \(Q^2 \)

- NLO predictions provide a good description of the data over the whole used phase space

- theory error is significantly larger than experimental errors in almost all bins
 \[\mu_R \] uncertainty is largest theory error
 \[\text{jet energy scale uncertainty dominates experimental uncertainty} \]
Extraction of α_s

- QCD predictions were fitted using a χ^2 method
 - parameters representing systematic shifts of detector observables are left free in the fit (Hessian method)
- values of α_s were extracted by fitting the individual normalized inclusive, 2-jet, 3-jet cross sections and their combination

Combined value:

$$\alpha_s (M_Z) = 0.1168 \pm 0.0007 \text{ (exp.)}$$
$$+0.0046 \text{ (th.)}$$
$$-0.0030 \pm 0.0016 \text{ (PDF)}$$

Fit quality: $\chi^2/\text{ndf} = 65/53$

Observed running agrees with QCD expectation!
Summary of α_s Extractions

- extracted α_s values are consistent with the world average!
- precision is comparable to the values obtained from e^+e^- interactions
- HERA competitive!
- different measurements and environments and processes are consistent

\leftrightarrow great success of QCD!!

- experimental
- theoretical uncertainty

$\alpha_s(M_Z)$

- ZEUS: Jets in γp (2008)
- ZEUS: Jets in γp (2003)
- H1: Jets at low Q^2 (2008)
- H1: Multi-Jets at high Q^2 (2009)
- ZEUS: Jets at high Q^2 (2009)
- e^+e^- four-jet rates
- world average (S. Bethke 2006)
Summary

Measurements of jet production at HERA allow detailed tests of QCD dynamics.

- the strong coupling α_s was extracted using ...
 - inclusive jets in photoproduction
 - inclusive jets at low Q^2
 - inclusive and multi-jets cross sections at high Q^2.

Conclusion:

- pQCD calculations describe the data over a wide range of phase space
- theoretical errors are often much larger than experimental uncertainties
- α_s extractions at HERA are competitive!