$\label{eq:cross-sections} Cross-sections of hadron \ production \\ by 3-15 \ GeV/c \ beams of \ protons \ and \ charged \ pions \\$

Joint Institute for Nuclear Research A. Bolshakova for the HARP-CDP group

The 2009 Europhysics Conference on High Energy Physics

The HARP detector at the CERN PS

- Protons and π[±] beams of 1.5 – 15 GeV/c
- Targets: Be C Al Cu Sn Ta Pb H₂ D₂ N₂ O₂ H₂O.

The HARP Large Angle detector

- Time Projection Chamber
- Resistive Plate Chambers
- Polar-angle range 20° < Θ < 125°

4

Characteristics of the HARP large-angle spectrometer

TPC: NIM A 588 (2008) 294–317	
$r \cdot \phi$ resolution	0.6 – 2.4 mm
z resolution	\sim 3.5 mm
Θ resolution for $\Theta=60^o$	\sim 9 mrad
$1/p_{ m T}$ resolution	$0.20 - 0.25 (\text{GeV}/c)^{-1}$
dE/dx resolution over 300mm	$\sim 16\%$
·	
DDC. NUM A 570 (2007) 110 120	

RPC: NIM A 578 (2007) 119–138	
Intrinsic efficiency	98%
TOF resolution	175 ps

Cross-sections on Be as a function of the charge-signed $p_{\rm T}$

- Be 5% $\lambda_{\rm abs}$ thin target
- polar-angle range $20^{\circ} < \Theta < 30^{\circ}$
- total errors are shown

Cross-sections of hadron production by 3-15 GeV/c beams of protons and charged pions (A.Bolshakova JINR)

6

Comparison of π^+ and π^- cross-sections on Ta, Cu and Be

- +8.0 (Be: +8.9) GeV/c proton beam
- ▶ Ta, Cu and Be 5% $\lambda_{\rm abs}$ thin targets
- polar-angle range
 20° < Θ < 30°
- total errors are shown

Comparison of particle production on Be and Ta

- Be (A = 9) Ta (A = 181) 5% λ_{abs} thin targets
- +8.9 GeV/c (Be)
 +8.0 GeV/c (Ta)
 proton beam energy
- polar-angle range
 20° < Θ < 30°
- momentum range 0.6 < p_{TPC} < 0.7 GeV/c</p>
- statistical errors are shown

Cross-sections of hadron production by 3-15 GeV/c beams of protons and charged pions (A.Bolshakova JINR)

Comparison with E802 results

E802 at Brookhaven National Laboratory [Phys.Rev.D45 (1992) 3906]

- +14.6 GeV/c protons on Be (+15 GeV/c for HARP-CDP)
- Lorentz-invariant cross-section as a function of $m_{\rm T} - m_{\pi}$ ($m_{\rm T}$ is the pion transverse mass)
- ▶ π^{\pm} secondaries
- ▶ rapidity 1.2 < *y* < 1.4
- statistical uncertainties only

8

Comparison with E910 results

E910 at Brookhaven National Laboratory [Phys.Rev.C65 (2002) 024904]

- +12.3 GeV/c protons on Cu (+12 GeV/c for HARP-CDP)
- π[±] secondaries
- polar-angle range: $26^{\circ} \lesssim \Theta \lesssim 37^{\circ}$
- statistical uncertainties only

9

CDP group vs Harp Collaboration

- ► +12GeV/c proton beam
- Be, Cu and Ta 5% λ_{abs} thin targets

- polar-angle range
 20° < Θ < 30°
- total errors are shown

Cross-sections of hadron production by 3-15 GeV/c beams of protons and charged pions (A.Bolshakova JINR)

Prospects for further results from HARP-CDP

the available data for 5% $\lambda_{\rm abs}$ thin targets 1.5 - 15.0 GeV/c beam energy

nucleus Be C Al Cu Sn Ta Pb A = 9 12 27 64 119 181 207 ready in progress intended

Conclusion

- The design of the proton driver of a neutrino factory can proceed with our Ta data
- We offer precise systematic measurements for the understanding of the mechanism of hadron production on nuclei:
 - dependence on secondary particle type (p, π^+ , π^-)
 - dependence on beam particle (p, π^+ , π^-)
 - dependence on beam momentum (1.5 to 15 GeV/c)
 - dependence on atomic number A of the target nucleus
- Our measurements are ready to be incorporated in hadron generator models