Pamela and Fermi data: A new background for future dm searches?

arXiv:0906.0736

Carlos E. Yaguna UAM and IFT July, 2009

The positron fraction and the total electron flux were recently measured by Pamela and Fermi

An excess in the e^+ fraction was reported by Pamela

Fermi measured the total $e^+ + e^-$ flux

Additional sources of high energy positrons are required to explain the data

100

Additional sources of high energy positrons are required to explain the data

The dark matter interpretation of the data has several problems

Large annihilation rates and unusual final states Boost factors or non-thermal dm Leptonic channels are favored

Vanilla DM models cannot explain the data

Neither SUSY candidates, nor LKP, nor scalars, etc.

Viable models have to be carefully arranged

MultiTeV masses Final states: $\mu^+\mu^-$, $\tau^+\tau^-$, 4μ

DM models that can explain Pamela and Fermi are tightly constrained by experimental data

They predict large γ and radio fluxes

Additional constraints from BBN, CMB

Fermi will test the DM interpretation through IC

DM DM $\rightarrow \mu^+ \mu^-$, Einasto profile

Figure from arXiv:0905.0480

If astrophysical positrons account for the data they constitute a new background to dm searches

We study the effect of this new e^+ background on the detectability of a dm positron signal

We analyze 4 dm models: $\chi\chi \rightarrow b\bar{b}, W^+W^-, e^+e^-$ A typical KK model

 $\langle \sigma v
angle$ and m_χ are taken as free parameters

We consider the prospects for detection at AMS-02

To be detectable, the dark matter signal has to be only slightly larger than previously believed

A positron signal from dark matter annihilations is still within the reach of future experiments

