Claudio Gatti Laboratori Nazionali di Frascati – INFN

On behalf of the ATLAS and CMS Collaborations

Outline		
1.	pp→Z'→ee	
2.	pp → Z' → μμ	
3.	pp→W'→lv	
4.	$pp \rightarrow W_R \rightarrow lljj$	

EPS HEP 2009, 16-22 July Krakow, Poland

New bosons predicted as narrow resonances: $\Gamma/M\sim 1-2\%$

Direct searches			
Mass Limit (95%)	Cross section at LHC (14 TeV)		
Z' (SM-like) 1 TeV	$\sigma(pp \rightarrow Z' \rightarrow ll) \sim 0.5 \text{ pb } (M(Z')=1 \text{ TeV})$		
W' (SM-like) 1 TeV	$\sigma(pp \rightarrow W' \rightarrow lv) \sim 5 \text{ pb} (M(W')=1 \text{ TeV})$		
W_R 750 GeV	$\sigma(pp \rightarrow W_R \rightarrow lljj) \sim 0.4 \text{ pb} (M(W_R) = 1.5 \text{ TeV})$		

Tevatron limited by CM energy \rightarrow

Larger CM energy at LHC will allow us to probe the mass region above 1 TeV

In the following, I'm assuming $\sqrt{s}=14$ TeV

I'll focus on discoveries with 100 pb⁻¹ (and a little bit more on Atlas)

Z'**→**ee

DY irreducible background $\sigma(pp \rightarrow Z/\gamma \rightarrow ll) = 0.1 \text{ pb for M} > 0.5 \text{ TeV}$ QCD: $\sigma(dijet p_T^* > 280 \text{ GeV}) = 13 \text{ nb}$

Electron identification: E_{Had}/E_{em} ; track association; E/p; shower shape.

e/jet rejection (ATLAS) $E_T^{Jet} = 280-560 \text{ GeV}$ Efficiency Rejection e-loose 90% 600 e-medium 85% 2300

ttbar \rightarrow ee background estimated from data counting the number of ttbar \rightarrow eµ (CMS) $N_{\mu e} \approx 2N_{ee}$ With 100 pb⁻¹ expected 16 "ee" events and 43 "eµ" events with E_T> 80 GeV and M_{II}>200 GeV

Performance studies with $Z \rightarrow ee$

Z→ee events useful for several studies: Efficiencies, calibration, material effects ...

Electron identification efficiency:

With 100 pb⁻¹ with 1% error for p_T up to 100 GeV

In-situ calibration:

Atlas calorimeter response locally uniform within 0.5% (from test beam). Understand detector material in ID studying conversions.

Use E/p from inclusive electrons (HeavyQ, W decays).

Mass constraint in $Z \rightarrow ee$ events used for intercalibration of different regions to keep constant term <0.7%.

Non trivial extrapolation to higher p_T

$Z' \rightarrow ee:$ discovery potential

Background: Drell-Yan 1% signal (QCD reduced to 0.3 DY) Atlas mass resolution ~1% increased to $1.5\% \rightarrow 5\%$ syst. error CMS mass resolution ~2% assuming calibration available with 100 pb⁻¹ Theoretical uncertainties $\rightarrow 10\%$ Z'**→**μμ

Reducible background (ttbar, jets) \rightarrow loose cut on isolation and jet multiplicity (easier rejection than in electron case)

DY (irreducible) dominates.

Atlas muon spectrometer at 500 GeV: sagitta~1 mm $dp_T/p_T \sim 6\%$ (>> Γ/M) Inner detector: sagitta~150 µm $dp_T/p_T \sim 15\%$

For nominal performance of Atlas, we need alignment better than 30 μ m in the muon spectrometer and better than 10 μ m in ID (silicon modules).

Alignment

Optical alignment: absolute alignment O(100 μ m); relative changes O(20 μ m) Track-based alignment: final alignment 15,000 tracks/tower (30 pb⁻¹)

Inner detector

Preliminary results with cosmics (residuals):

- 1. Pixel ~20 μm
- 2. SCT ~30 μm
- 3. TRT ~190 μm

With tracks: 10⁶ tracks (dedicated stream) Remove "weak modes": alignment with high

statistics; E/p; cosmics and beam-halo events; resonances. 7 Contamination from sources other than DY (jets, ttbar+jet) are estimated from same-sign events.

Z→µµ events used to measure the reconstruction efficiency up to 100 GeV. Better than 1% (per $\eta \times \phi$ bin) accuracy with 100 pb⁻¹

Momentum scale and resolution determined by fitting the Z lineshape. With about 50 pb⁻¹ statistical errors of about 0.5% are obtained.

Non trivial extrapolation to higher p_T

$Z' \rightarrow \mu \mu$: discovery potential

Competitive with electron channel (even if lower resolution). Atlas considers a conservative 300 μ m misalignment with 150 μ m uncertainty. Discovery still possible with less than 30 pb⁻¹. W'**→**lv

ATLAS: 1 lepton with $p_T > 50$ GeV and $|\eta| < 2.5$; $E_T^{Miss} > 50$ GeV CMS: 1 lepton with $p_T > 30$ GeV and $|\eta| < 2.5$; $0.4 < p_T / E_T^{Miss} < 1.5$ and $\Delta \phi$ -cut

Irreducible background: $W \rightarrow lv$ Reducible background: ttbar and jets

Further background rejection: isolation; jet-veto

QCD sample 560<p_T<1120 GeV

Simulation with dead regions in calorimeter

Fake E_T^{Miss} gives a large contribution to the measured missing energy in high- p_T jets.

Several sources of fake E_T^{Miss} :

- 1. Not reconstructed muons
- 2. Cracks and gaps in calorimeters
- 3. Instrumental effects (crucial in first data taking)
 - Region 1: two dead LArEM regions one dead HEC region Region 2: one dead LArEM region one dead HEC region Region 3: No dead regions

Large dead regions $\Delta R \sim 0.5 \div 1$

E_T^{Miss} performance and background estimate

 E_T^{Miss} commissioning with minimum-bias events. Will provide first measurement of the resolution. With 100 pb⁻¹ from Z→ee, μμ, ττ and W→ev, μv and ttbar events:

- 1. Scale
- 2. Resolution
- 3. Linearity

Estimate of ttbar background from data using b-tagging (single-double tag method) With 100 pb⁻¹ 30% statistical error.

 $W' \rightarrow lv$: discovery potential

Theoretical uncertainties (PDF,NLO) \rightarrow 8-9% Experimental uncertainties (Atlas):

- 1. signal \rightarrow 1.5% (electrons), 5% (muons)
- 2. background \rightarrow 3% (electrons), 8% (muons)

Discovery in the 1 TeV region with less than 10 pb⁻¹

 $W_R \rightarrow lljj$

Left-Right symmetric models predict the production of a W_R boson decaying into lepton and right-handed Majorana neutrino.

Select 2 leptons and two jets

All objects with $p_T > 20 \text{ GeV}$ Leptons with $|\eta| < 2.5$ Jets with $|\eta| < 4.5$ $M_{dilepton} > 300 \text{ GeV}$ $\Sigma E_T > 700 \text{ GeV}$

Main background: ttbar, DY, vector boson pairs.

 M_{WR} =1800 GeV M_{N} =300 GeV M_{WR} =1500 GeV M_{N} =500 GeV

 $W_R \rightarrow lljj$

 $W_R \rightarrow Iljj$

Uncertainty on luminosity $\rightarrow 20\%$ Jet energy scale ($\pm 10\%$) $\rightarrow 15\%$ -35% Jet resolution ($\pm 30\%$) $\rightarrow 5\%$ -30% MC statistics $\rightarrow 15\%$ -30% Overall uncertainty on background $\rightarrow 45\%$

Extrapolation to lower \sqrt{s}

Complete study of $Z' \rightarrow ee$ with $\sqrt{s}= 10$ TeV taking into account efficiency determination and background estimate from data control-samples.

 Z' SSM M=1 TeV

 \sqrt{s} (TeV)
 10
 14

 BR× σ (fb)
 236
 458

Summary

Bibliography

ATLAS

CERN-OPEN-2008-020 "Expected Performance of the ATLAS Experiment. Detector, Trigger and Physics" 2008 JINST 3 S08003 "The ATLAS Experiment at the CERN Large Hadron Collider"

CMS

CMS PAS SBM-07-002 "Search for New High-Mass Resonances Decaying to Muon Pairs in the CMS Experiment" CMS PAS EXO-08-001 "Search for high mass resonance production decaying into an electron pair in the CMS experiment" CMS PAS EXO-09-006 "Search for high mass resonance production decaying into an electron pair in CMS at 10 TeV with 100 pb⁻¹" CMS PAS EXO-08-004 "Discovery Potential of W'→ev at CMS" 2008 JINST 3 S08004 "The CMS Experiment at the CERN LHC"