The Global Electroweak Fit (and Beyond) with Gfitter

Andreas Hoecker (CERN)

EPS 2009, 16 - 22 July, 2009

C fitter M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer M. Baak, M. Goebel, H. Flaecher, J. Haller, A.H., D. Ludwig, K. Mönig, M. Schott, J. Stelzer

Themes

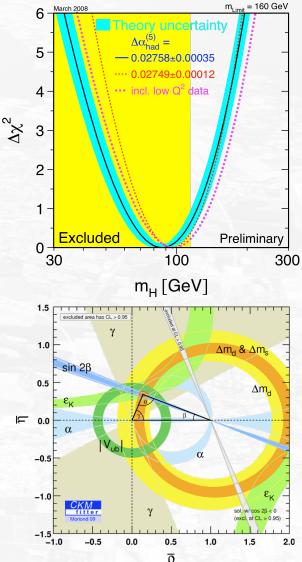
and the second

- I. Introduction to the Gfitter programme
- II. Input to the global electroweak Standard Model fit
- III. Fit results
- IV. Vacuum stability at high scales (→ Jose Espinosa today, 4:45pm)
- V. Two-Higgs-Doublet Model (→ Max Baak today, 4:30pm)
- VI. Outlook

Electroweak fits have a long history ...

Based on a huge amount of preparatory work

- Needed to understand importance of loop corrections
- Precise Standard Model (SM) predictions and measurements required


EW fits routinely performed by many groups

- D. Bardinet al. (ZFITTER), G. Passarinoet al. (TOPAZ0), LEP EW WG (M. Grünewald, K. Mönig *et al.*), J. Erler (GAPP), ...
- Important results obtained !

Global SM fits also used at lower energies

- CKMfitter (J. Charles et al.), UTfit (M. Bona et al.), ...
- Mostly concentrating on CKM matrix

Gfitter

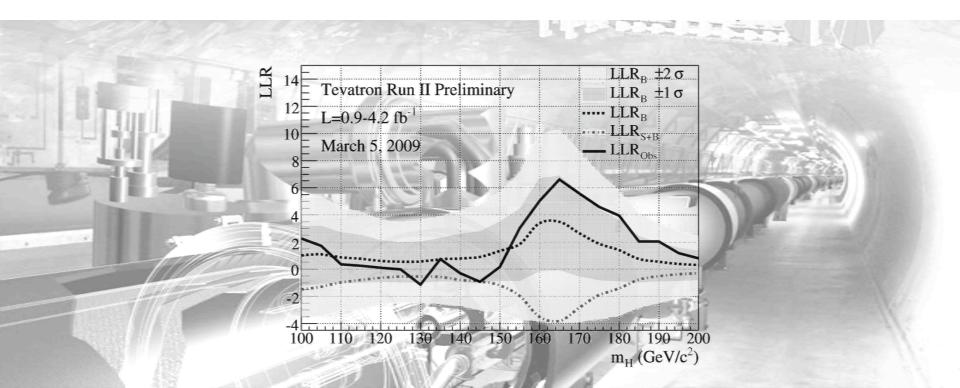
A Generic Fitting Project for HEP Model Testing

Goal: provide state-of-the-art model testing tool for LHC era

• Tools used by LEP written in outdated programming language, difficult to maintain in line with theoretical and experimental progress, difficult to include beyond-SM scenarios, limited fitting and statistics capabilities, ...

Gfitter software

- Modular, object-oriented C++ relying on ROOT, XML and python
- Core package with data handling, fitting and statistics tools
- Independent physics libraries: SM, 2HDM, Oblique parameters, ...


Gfitter features

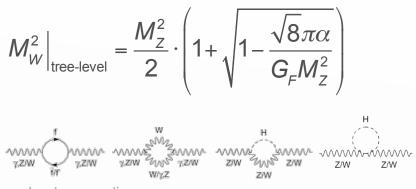
- Consistent treatment of theoretical uncertainties in fit using *R*fit prescription (CKMfitter)
- Various fitting tools: Minuit, Genetic Algorithm and Simulated Annealing (via TMVA)
- Full statistics analysis: parameter scans, p-values, MC analyses, goodness-of-fit tests

Main publication: EPJ C60, 543-583,2009 [arXiv:0811.0009]

Fit Inputs

Theoretical Input

Since the Z boson couples to all fermion-antifermion pairs, it is ideal for measuring and studying the electroweak and strong interactions


State-of-the art calculations, in particular:

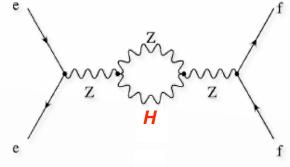
- *M_W* and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop form factor corrections
 [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.] [M. Awramik et al., JHEP 11, 048 (2006) and refs.]
- Radiator functions: 3NLO prediction of the massless QCD cross section [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

Radiative corrections are important !

- Example: consider tree-level electroweak unification relation
 - → gives: $M_W = (79.964 \pm 0.005) \text{ GeV}$
 - Exp: $M_W = (80.399 \pm 0.023) \text{ GeV}$

\rightarrow 19 σ discrepancy !

and vertex corrections ...


Theoretical Input

Since the Z boson couples to all fermion-antifermion pairs, it is ideal for measuring and studying the electroweak and strong interactions

State-of-the art calculations, in particular:

- *M_W* and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop form factor corrections
 [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.] [M. Awramik et al., JHEP 11, 048 (2006) and refs.]
- Radiator functions: 3NLO prediction of the massless QCD cross section [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

```
Logarithmic Higgs dependence enters through virtual corrections, e.g. :
```


Theoretical Input

Since the Z boson couples to all fermion-antifermion pairs, it is ideal for measuring and studying the electroweak and strong interactions

State-of-the art calculations, in particular:

- *M_W* and sin²θ^f_{eff}: full two-loop + leading beyond-two-loop form factor corrections
 [M. Awramik et al., Phys. Rev D69, 053006 (2004) and ref.] [M. Awramik et al., JHEP 11, 048 (2006) and refs.]
- Radiator functions: 3NLO prediction of the massless QCD cross section [P.A. Baikov et al., Phys. Rev. Lett. 101 (2008) 012022]

Wherever possible, calculations cross-checked against ZFITTER → excellent agreement

Free fit parameters are :

- $M_Z, M_H, m_t, m_c, m_b, \Delta \alpha_{had}(M_Z), \alpha_s(M_Z),$
- + scale parameters for theoretical uncertainties on M_W ($\sigma(M_W)$ = 4–6 MeV), sin² θ_{eff}^f ($\sigma(sin^2\theta_{eff}^I)$ = 4.7·10⁻⁵), and for the electroweak form factors ρ_Z^f , κ_Z^f (fully correlated)

Experimental Input

Experimental results:

- Z-pole observables: LEP/SLD results (corrected for ISR/FSR QED effects) [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
- M_W and Γ_W : LEP + Tevatron (incl. Moriond-09 result from D0)

[ADLO, hep-ex/0612034] [D0 Conference Note 5893-CONF] [CDF, Phys Rev. D77, 112001 (2008)] [CDF, Phys. Rev. Lett. 100, 071801 (2008)] [CDF+D0, Phys. Rev. D 70, 092008 (2004)]

- *m_t*: latest Tevatron average [arXiv:0903.2503]
- *m_c*, *m_b*: world averages [PDG, J. Phys. G33,1 (2006)]
- $\Delta \alpha_{had}(M_Z)$: [K. Hagiwara et al., Phys. Lett. B649, 173 (2007)] + rescaling mechanism to account for α_s dependency
- Direct Higgs searches at LEP and Tevatron (incl. Moriond-09 Tevatron average) [ADLO: Phys. Lett. B565, 61 (2003)] [CDF+D0: arXiv:0903.4001]

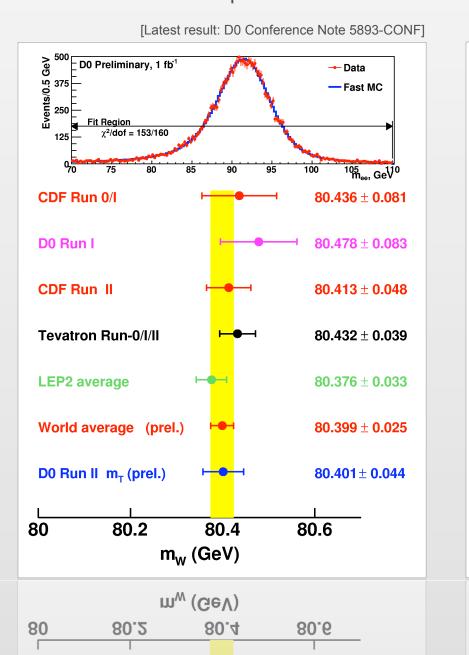
Not considered: results on $sin^2\theta_{eff}$ from

- NuTeV; reason: unclear theoretical uncertainties from QCD effects (NLO corrections, nuclear effects of the bound nucleon PDFs)
- APV, fixed target polarised Möller scattering; reason: present experimental accuracy too low

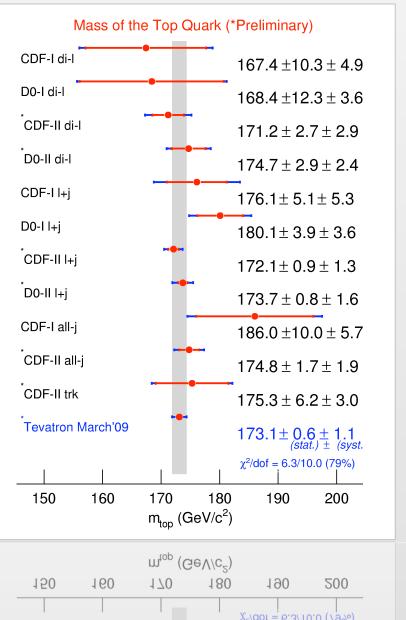
Parameter	Input value	Free in fit	
M_Z [GeV]	91.1875 ± 0.0021	yes	
Γ _Z [GeV]	2.4952 ± 0.0023	_	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	-
R^0_ℓ	20.767 ± 0.025	_	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	—	
$A_\ell (\star)$	0.1499 ± 0.0018	_	
A_c	0.670 ± 0.027	—	SLC
A_b	0.923 ± 0.020	_	
$A^{0,c}_{ m FB}$	0.0707 ± 0.0035	—	٩
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	ГШЬ
R_c^0	0.1721 ± 0.0030	_	SLC
R_b^0	0.21629 ± 0.00066	_	SL
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	'

× 11

Parameter	Input value	Free in fit
M_H [GeV] $^{(\circ)}$	Likelihood ratios	yes
M_W [GeV]	80.399 ± 0.023	_
Γ_W [GeV]	2.098 ± 0.048	_
\overline{m}_c [GeV]	1.25 ± 0.09	yes
\overline{m}_b [GeV]	4.20 ± 0.07	yes
m_t [GeV]	173.1 ± 1.3	yes
$\Delta lpha_{ m had}^{(5)}(M_Z^2) \ ^{(\dagger riangle)}$	2768 ± 22	yes
$\alpha_s(M_Z^2)$	_	yes
$\delta_{ m th} M_W$ [MeV]	$[-4,4]_{ t theo}$	yes
$\delta_{ m th} \sin^2 \! \theta_{ m eff}^{\ell}$ (†)	$[-4.7, 4.7]_{\mathrm{theo}}$	yes
$\delta_{ m th} ho_Z^f$ (†)	$[-2,2]_{ m theo}$	yes
$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{ m theo}$	yes

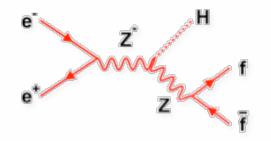

EP & Tevatron
Tevatron L

Correlatio	Correlation matrix for observables from Z lineshape fit						
	M_Z	Γ_Z	$\sigma_{ m had}^0$	R_ℓ^0	$A^{0,\ell}_{ ext{ m FB}}$		
\overline{M}	z 1	-0.02	-0.05	0.03	0.06		
Γ_Z	7	1	-0.30	0.00	0.00		
$\sigma_{ m h}^0$	ad		1	0.18	0.01		
R^0_ℓ)			1	-0.06		
$A_{ extsf{F}}^{0}$	$,\ell$ B				1		


Correlation matrix for heavy-flavour observables at Z pole
--

	$A^{0,c}_{ ext{FB}}$	$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$	A_c	A_b	R_c^0	R_b^0
$\overline{A^{0,c}_{\scriptscriptstyle\mathrm{FB}}}$	1	0.15	0.04	-0.02	-0.06	0.07
$A^{0,b}_{\scriptscriptstyle\mathrm{FB}}$		1	0.01	0.06	0.04	-0.10
A_c			1	0.11	-0.06	0.04
A_b				1	0.04	-0.08
R_c^0					1	-0.18

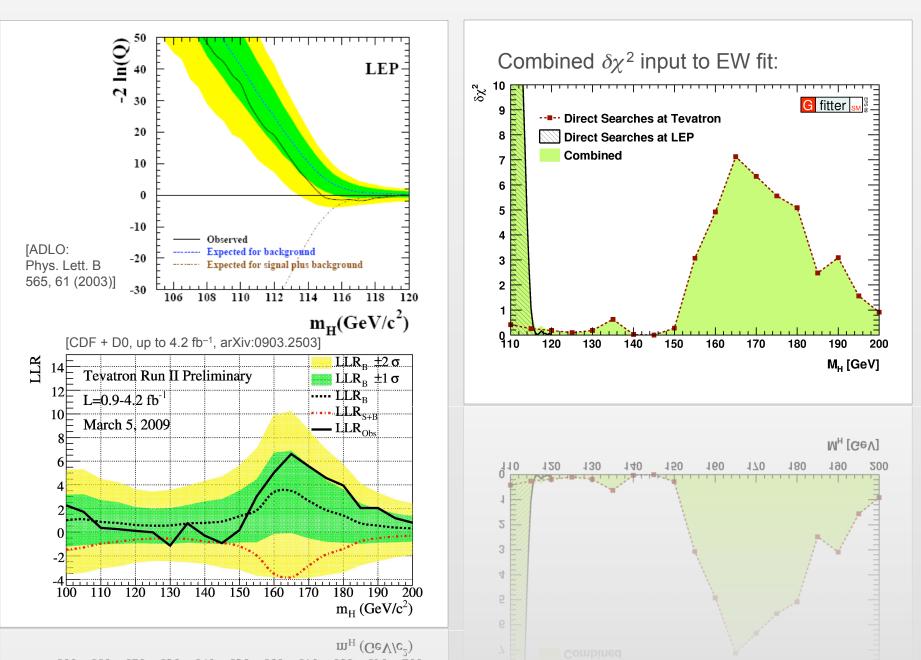
2009 M_W and m_{top} averages


[CDF + D0, 3.6 fb⁻¹, arXiv:0903.2503]

Direct Higgs Searches

LEP: Higgs production via "Higgs-Strahlung"

 ee → ZH (H → bb, ττ) [ADLO: Phys. Lett. B565, 61 (2003)]

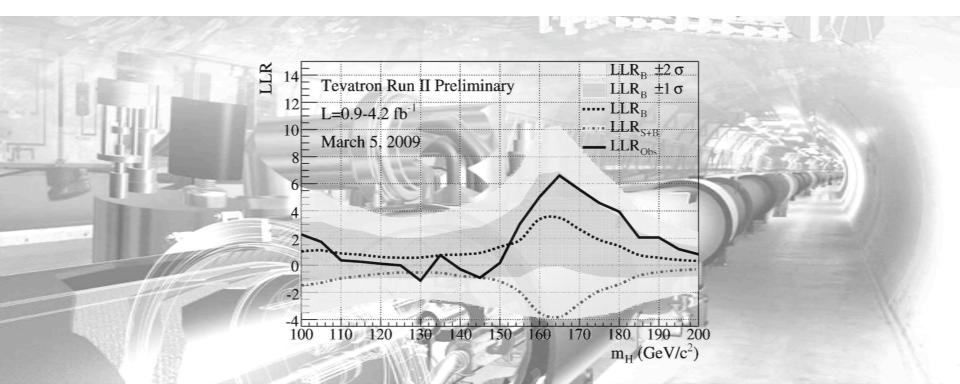

Tevatron: gg fusion with $H \rightarrow WW$, associated production, weak boson fusion

• $gg \rightarrow H \rightarrow WW, WH \rightarrow Ivbb, 3W, ZH \rightarrow vv(II)bb, WBF \rightarrow H \rightarrow \gamma\gamma, \tau\tau$ [CDF+D0: arXiv:0903.4001 – up to 4.2 fb⁻¹]

Statistical interpretation in global fit: two-sided CL_{S+B}

- Experiments measure test statistics LLR = $-2\ln Q$, where $Q = L_{S+B} / L_B$
- LLR is transformed by experiments into CL_{S+B} using pseudo-MC experiments
- We transform one-sided CL_{S+B} into a two-sided CL_{S+B} (measure *deviation* from SM !)
- Contribution to χ^2 estimator obtained via inverse error function: $\Delta \chi^2 = \text{Erf}^{-1} (1 \text{CL}_{S+B}^{2-\text{sided}})$
- Alternative treatments (thanks to fruitful discussion with Tevatron people):
 - Use one-sided CL_{S+B}: however, different interpretation want SM Higgs (not any Higgs)
 - − Directly use $\Delta \chi^2 \approx$ LLR: Bayesian interpretation, lacks pseudo-MC information

Direct Higgs Searches



Fit Results

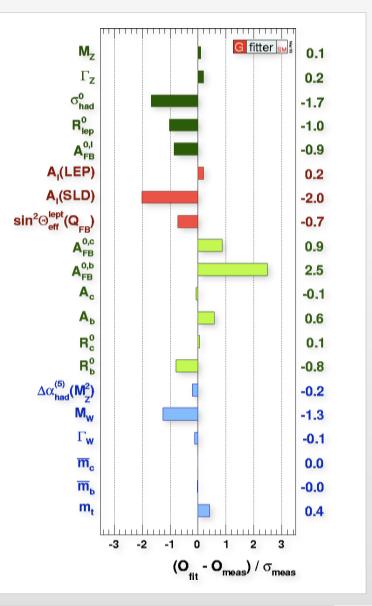
Distinguish two fit types:

Standard Fit: all data except for direct Higgs searches Complete Fit: all data including direct Higgs searches

Parameter	Input value	Free in fit	Results from g	•	Complete fit w/o
r urumotor	input value		Standard fit	Complete fit	exp. input in line
M_Z [GeV]	91.1875 ± 0.0021	yes	91.1874 ± 0.0021	91.1876 ± 0.0021	$91.1974^{+0.0191}_{-0.0159}$
Γ_Z [GeV]	2.4952 ± 0.0023	_	2.4960 ± 0.0015	2.4956 ± 0.0015	$2.4952^{+0.0017}_{-0.0016}$
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	_	41.478 ± 0.014	41.478 ± 0.014	41.469 ± 0.015
R^0_ℓ	20.767 ± 0.025	_	20.742 ± 0.018	20.741 ± 0.018	20.717 ± 0.027
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	_	0.01638 ± 0.0002	0.01624 ± 0.0002	$0.01617^{+0.0002}_{-0.0001}$
$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	_	0.1478 ± 0.0010	$0.1472\substack{+0.0009\\-0.0008}$	_
A_c	0.670 ± 0.027	_	$0.6682^{+0.00045}_{-0.00044}$	$0.6679^{+0.00042}_{-0.00036}$	$0.6679^{+0.00041}_{-0.00036}$
A_b	0.923 ± 0.020	_	0.93469 ± 0.00010	$0.93463^{+0.00007}_{-0.00008}$	$0.93463^{+0.00007}_{-0.00008}$
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	_	$0.0741^{+0.0006}_{-0.0005}$	0.0737 ± 0.0005	0.0737 ± 0.0005
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	_	0.1036 ± 0.0007	$0.1032^{+0.0007}_{-0.0006}$	$0.1037^{+0.0004}_{-0.0005}$
R_c^0	0.1721 ± 0.0030	_	0.17225 ± 0.00006	0.17225 ± 0.00006	0.17225 ± 0.00006
R_b^0	0.21629 ± 0.00066	_	0.21578 ± 0.00005	0.21577 ± 0.00005	0.21577 ± 0.00003
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	_	0.23142 ± 0.00013	$0.23151^{+0.00010}_{-0.00012}$	$0.23149^{+0.00013}_{-0.00010}$
M_H [GeV] ^(\circ)	Likelihood ratios	yes	$83^{+30[+75]}_{-23[-41]}$	$116^{+15.6[+36.5]}_{-1.3[-2.2]}$	$83^{+30[+75]}_{-23[-41]}$
M_W [GeV]	80.399 ± 0.023	_	$80.384^{+0.014}_{-0.015}$	$80.371^{+0.008}_{-0.011}$	$80.361^{+0.013}_{-0.012}$
Γ_W [GeV]	2.098 ± 0.048	_	$2.092^{+0.001}_{-0.002}$	2.092 ± 0.001	2.092 ± 0.001
$\overline{\overline{m}_c}$ [GeV]	1.25 ± 0.09	yes	1.25 ± 0.09	1.25 ± 0.09	_
\overline{m}_b [GeV]	4.20 ± 0.07	yes	4.20 ± 0.07	4.20 ± 0.07	_
m_t [GeV]	173.1 ± 1.3	yes	173.2 ± 1.2	173.6 ± 1.2	$179.5^{+8.8}_{-5.2}$
$\Delta \alpha^{(5)}_{\rm had} (M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2768 ± 22	yes	2772 ± 22	2764^{+22}_{-21}	2733^{+57}_{-63}
$\alpha_s(M_Z^2)$	_	yes	$0.1192^{+0.0028}_{-0.0027}$	0.1193 ± 0.0028	0.1193 ± 0.0028
$\overline{\delta_{\mathrm{th}}M_W}$ [MeV]	$[-4,4]_{ t theo}$	yes	4	4	_
$\delta_{\mathrm{th}} \sin^2 \theta_{\mathrm{eff}}^{\ell}$ (†)	$[-4.7, 4.7]_{\mathrm{theo}}$	yes	4.7	0.8	_
$\delta_{\mathrm{th}} \rho_Z^f$ (†)	$[-2,2]_{ m theo}$	yes	2	2	_
$\delta_{ m th}\kappa^f_Z$ (†)	$[-2,2]_{ m theo}$	yes	2	2	_

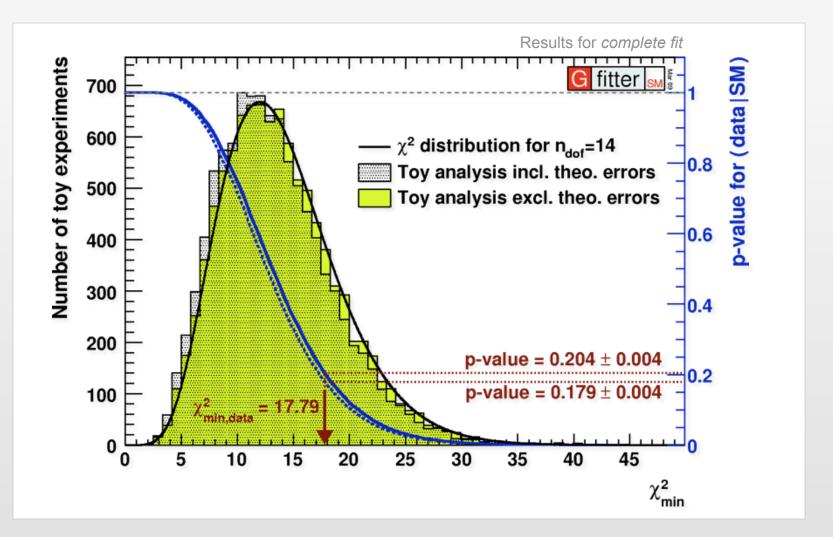
Parameter	$\ln M_H$	$\Delta \alpha^{(5)}_{\rm had}(M_Z^2)$	M_Z	$\alpha_s(M_Z^2)$	m_t	\overline{m}_c	\overline{m}_b
$\ln M_H$	1	-0.395	0.113	0.041	0.309	-0.001	-0.006
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$		1	-0.006	0.101	-0.007	0.001	0.003
M_Z			1	-0.019	-0.015	-0.000	0.000
$\alpha_s(M_Z^2)$				1	0.021	0.011	0.043
m_t					1	0.000	-0.003
\overline{m}_c						1	0.000

Correlation coefficients between free fit parameters


Goodness-of-Fit

Goodness-of-fit:

- Standard fit: $\chi^2_{min} = 16.4 \rightarrow \text{Prob}(\chi^2_{min}, 13) = 0.23$
- Complete fit: $\chi^2_{min} = 17.9 \rightarrow \text{Prob}(\chi^2_{min}, 14) = 0.21$

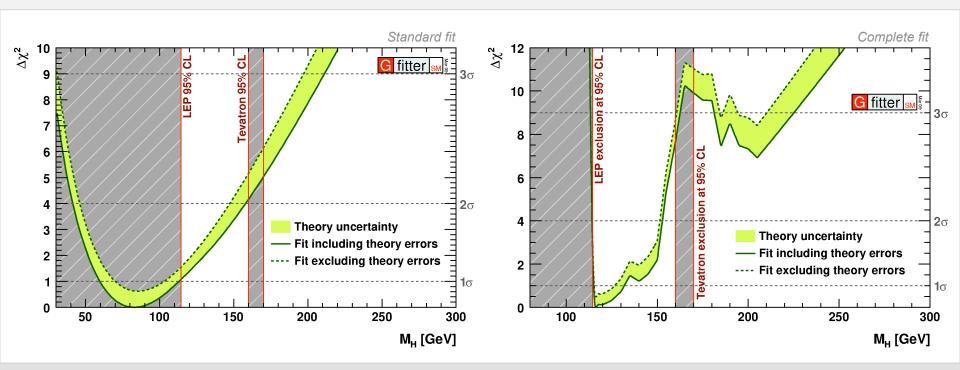

Pull values for complete fit (right figure \rightarrow)

- No individual pull exceeds 3σ
- FB(*b*) asymmetry largest contributor to χ^2_{min}
- Small contributions from M_Z, Δα^{had}(M_Z), m_c, m_b indicate that their input accuracies exceed fit requirements → parameters could have been fixed in fit

Goodness-of-Fit

Toy analysis: p-value for wrongly rejecting the SM = $0.20 \pm 0.01 - 0.02_{theo}$

Higgs Mass Constraints


M_H from Standard fit:

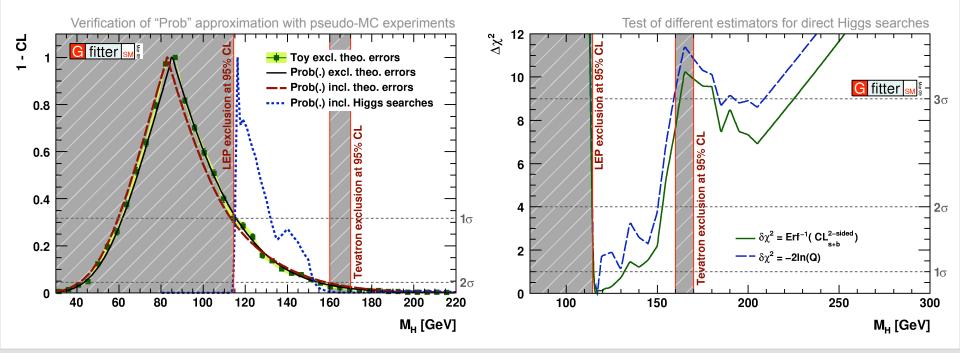
- Central value $\pm 1\sigma$: $M_H = 83^{+30}_{-23}$ GeV
- 2σ interval: [42, 158] GeV

Green band due to *R*fit treatment of theory errors, fixed errors lead to larger χ^2_{min}

M_H from Complete fit:

- Central value $\pm 1\sigma$: $M_{H} = 116^{+16}_{-1.3}$ GeV
- 2σ interval: [114, 153] GeV

Higgs Mass Constraints

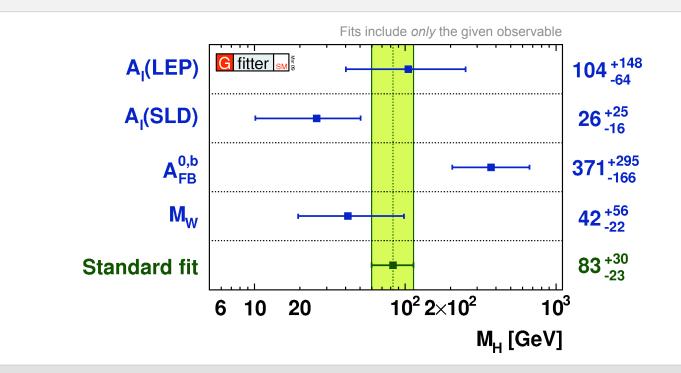

M_H from Standard fit:

- Central value $\pm 1\sigma$: $M_H = 80^{+30}_{-23}$ GeV
- 2σ interval: [42, 158] GeV

Green band due to *R*fit treatment of theory errors, fixed errors lead to larger χ^2_{min}

M_H from Complete fit:

- Central value $\pm 1\sigma$: $M_{H} = 116^{+16}_{-1.3}$ GeV
- 2σ interval: [114, 153] GeV

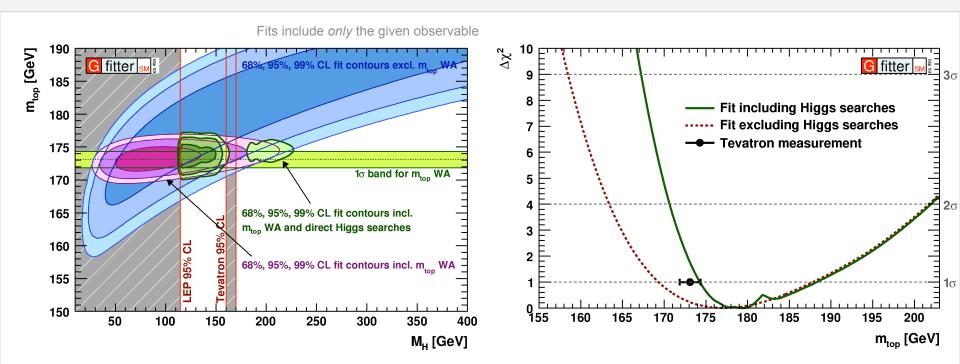

Higgs Mass Constraints

Known tension between $A^{0,b}_{FB}$ and $A_{Iep}(SLD)$ and M_W :

• Pseudo-MC analysis to evaluate

" Probability to observe a $\Delta \chi^2$ = 8.0 when removing the least compatible input"

- \rightarrow accounts for "look-elsewhere effect"
- Find: 1.4% (2.5 σ)

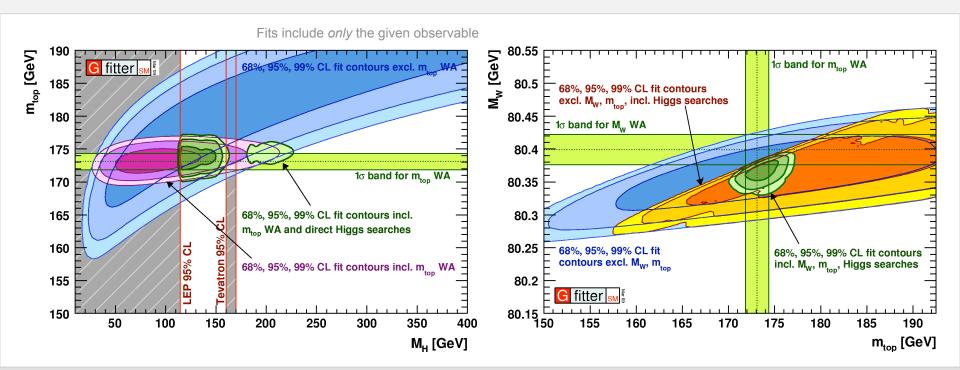

Top Mass

Quadratic sensitivity to m_{top}

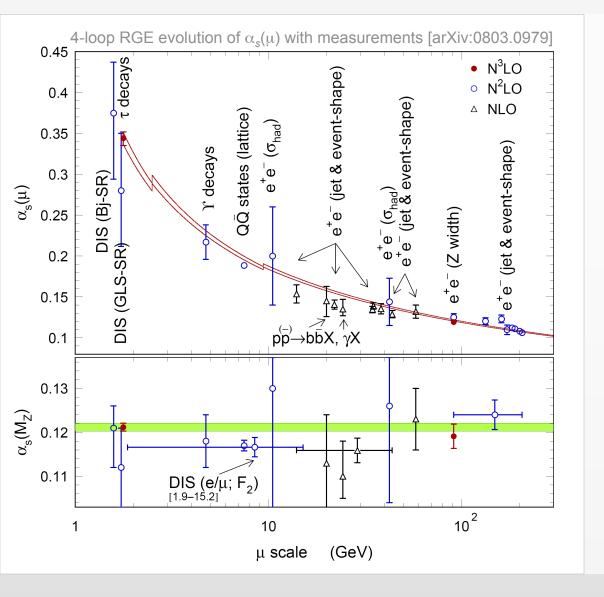
- Standard fit: $m_{top} = 177.2^{+10.5}_{-7.8}$ GeV
- Complete fit: $m_{top} = 179.5_{-5.2}^{+8.8}$ GeV

Tevatron average: (173.1 ± 1.3) GeV

For Standard fit with free m_{top} find: $m_{H} = 116^{+184}_{-61}$ GeV


Top Mass

Quadratic sensitivity to m_{top}


- Standard fit: $m_{top} = 177.2^{+10.5}_{-7.8}$ GeV
- Complete fit: $m_{top} = 179.5_{-5.2}^{+8.8}$ GeV

Tevatron average: (173.1 ± 1.3) GeV

For Standard fit with free m_{top} find: $m_{H} = 116^{+184}_{-61}$ GeV

NNNLO Determination of $\alpha_{\rm s}$

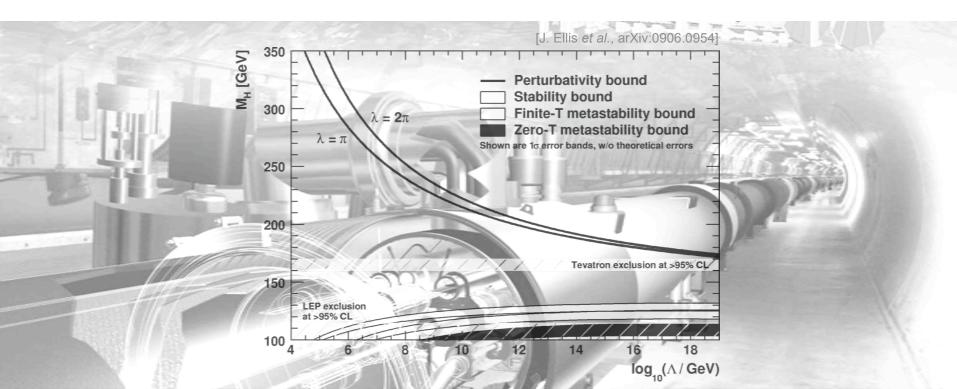
From Complete Fit:

 $\alpha_{\rm s}(M_Z) = 0.1193 \pm 0.0028 \pm 0.0001$

• First error experimental

• Second error theoretical (!)

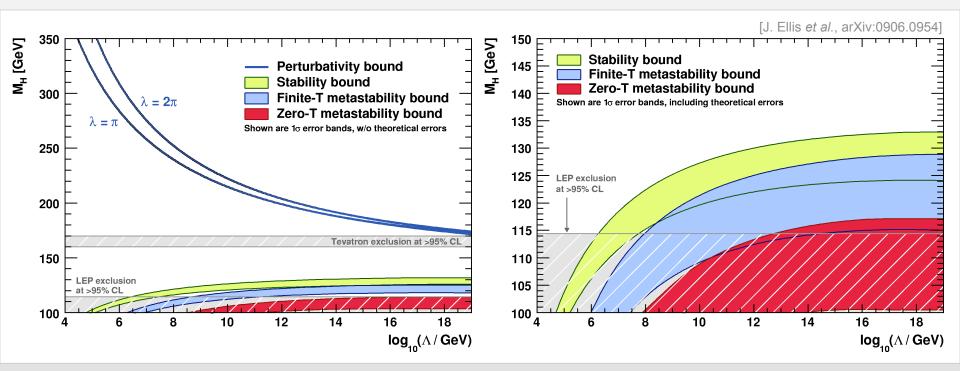
[incl. variation of renorm. scale from $M_Z/2$ to $2M_Z$ and massless terms of order/beyond $a_S^5(M_Z)$ and massive terms of order/beyond $a_S^4(M_Z)$]


Excellent agreement with N³LO result from hadronic τ decays
 [M. Davier et al., arXiv:0803.0979]

± 0.0005 _{exp}
± 0.0008 _{theo}
± 0.0005 _{evol}

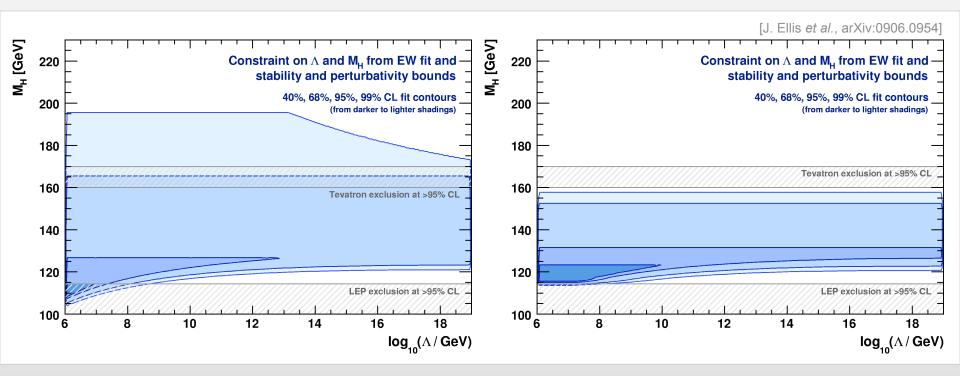
 Best current test of asymptotic freedom property of QCD !

The Fate of the Standard Model



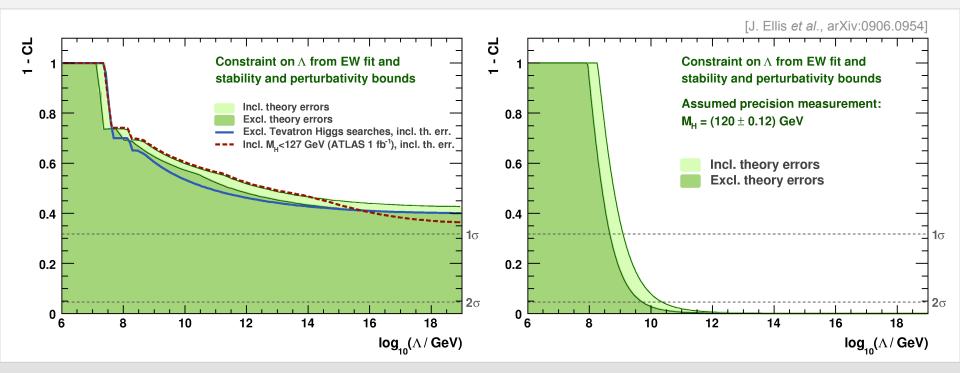
Driving the SM to *M*_{Planck}

As (well) known, the behaviour of the quartic Higgs couplings as function of the cut-off scale Λ puts bounds on M_H

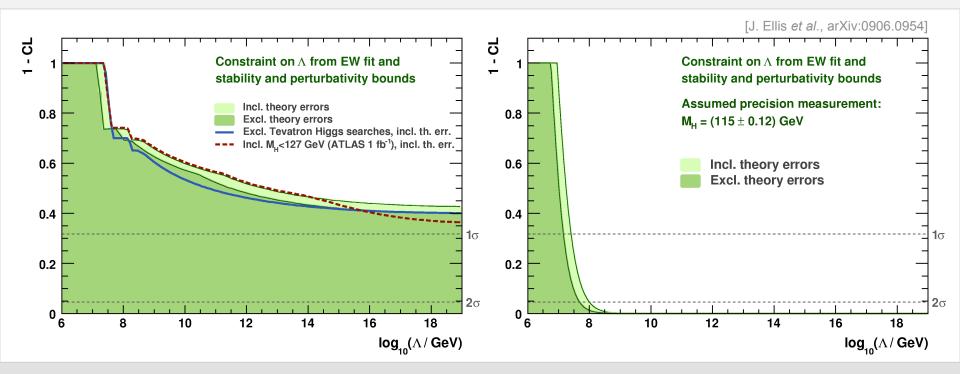

- For too large M_H , the couplings become non-perturbative ("triviality" or "blow-up" scenario)
- For too small M_{H} , the vacuum becomes unstable

 \rightarrow obtain three lower bounds on M_H from different requirement: absolute stability, finite-T and zero-T metastability

Can we obtain likelihoods on vacuum stability (or, likewise, the cut-off = new physics scale Λ) from constraint on M_H ?

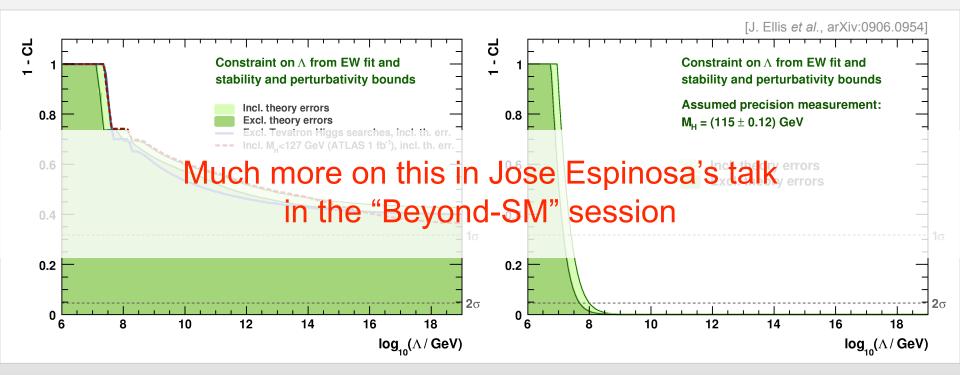

- Non-perturbativity excluded at 95.7% CL → raise to 99.1% with Tevatron Higgs searches !
- Cannot distinguish between vacuum stability, metastability or collapse scenarios \rightarrow requires $M_{H} > 122$ GeV to exclude collapse scenario at 95% CL

EPS – 2009, Krakow

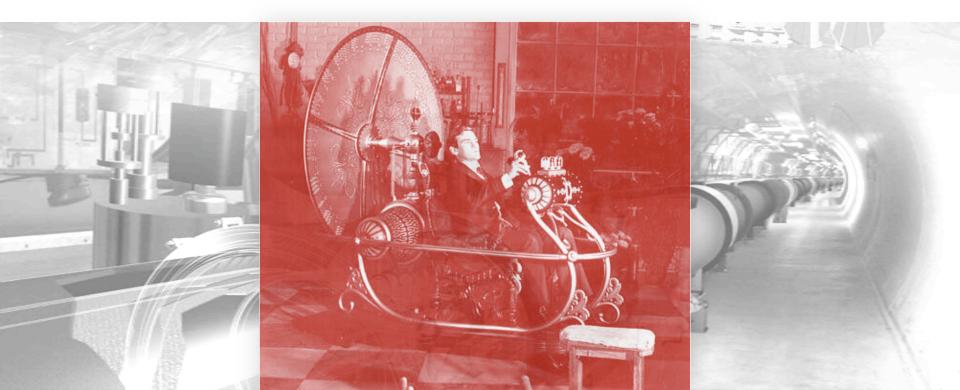

Can we obtain likelihoods on vacuum stability (or, likewise, the cut-off = new physics scale Λ) from constraint on M_H ?

- Requiring absolute vacuum stability (at all times), one can obtain upper bound Λ
 - Left plot: current situation → no significant information
 - Right plot: case for precise M_H measurement of **120 GeV**

Can we obtain likelihoods on vacuum stability (or, likewise, the cut-off = new physics scale Λ) from constraint on M_H ?


- Requiring absolute vacuum stability (at all times), one can obtain upper bound Λ
 - Left plot: current situation → no significant information
 - Right plot: case for precise M_H measurement of 115 GeV

EPS – 2009, Krakow

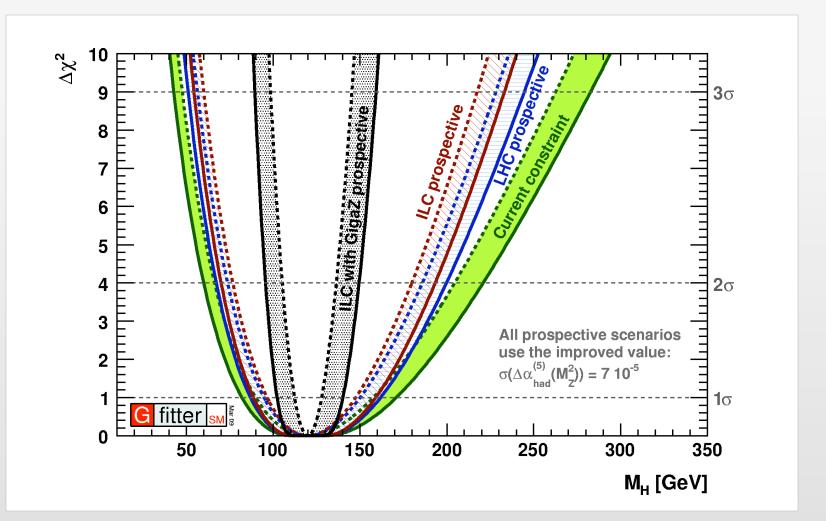

Can we obtain likelihoods on vacuum stability (or, likewise, the cut-off = new physics scale Λ) from constraint on M_H ?

- Requiring absolute vacuum stability (at all times), one can obtain upper bound Λ
 - Left plot: current situation → no significant information
 - Right plot: case for precise M_H measurement of 115 GeV

Prospects for the Standard Model Fit

Prospects for LHC, ILC and ILC with Giga-Z

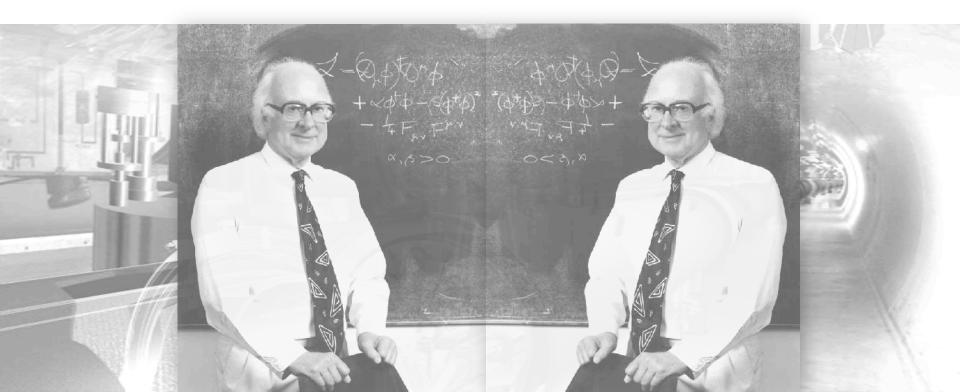
Assumed experimental improvements for prospective study:


- LHC: *M_W*, *m*_{top}
- ILC: *M_W*, *m*_{top}
- Giga-Z: M_{W} , m_{top} , $\sin^2\theta'_{eff}$, R_{lep}
- ISR-based (BABAR) and BESIII cross-section measurements should improve $\Delta \alpha^{had}(M_Z)$

		Expected uncertainty					
Quantity	Present	LHC	ILC	GigaZ (ILC)			
$M_W [$ MeV]	23	15	15	6			
$m_t \; [\; { m GeV}]$	1.3	1.0	0.2	0.1			
$\sin^2 \theta_{ m eff}^{\ell} \ [10^{-5}]$	17	17	17	1.3			
$R^0_\ell \; [10^{-2}]$	2.5	2.5	2.5	0.4			
$\Delta lpha_{ m had}^{(5)}(M_Z^2) \ [10^{-5}]$	22 (7)	22 (7)	22 (7)	22 (7)			
$M_{H} (= 120 \; { m GeV}) \; [\; { m GeV}] \ lpha_{S} (M_{Z}^{2}) \; [10^{-4}]$	$^{+54}_{-40} \begin{pmatrix} +51\\ -38 \end{pmatrix} \begin{bmatrix} +38\\ -30 \end{bmatrix}$ 28	$^{+45}_{-35} \begin{pmatrix} +42\\ -33 \end{pmatrix} \begin{bmatrix} +30\\ -25 \end{bmatrix}$ 28	$^{+42}_{-33} \begin{pmatrix} +39\\ -31 \end{pmatrix} \begin{bmatrix} +28\\ -23 \end{bmatrix}$ 28	$^{+26}_{-23} \begin{pmatrix} +20\\ -18 \end{pmatrix} \begin{bmatrix} +8\\ -8 \end{bmatrix}$ 6			

Input from: [ATLAS, Physics TDR (1999)] [CMS, Physics TDR (2006)] [A. Djouadi et al., arXiv:0709.1893][I. Borjanovic, EPJ C39S2, 63 (2005)] [S. Haywood et al., hep-ph/0003275] [R. Hawkings, K. Mönig, EPJ direct C1, 8 (1999)] [A. H. Hoang et al., EPJ direct C2, 1 (2000)] [M. Winter, LC-PHSM-2001-016]

Prospects for LHC, ILC and ILC with Giga-Z


Results on M_H , including (solid) and excluding (dotted) theoretical errors

EPS – 2009, Krakow

The Two-Higgs-Doublet Model (2HDM)

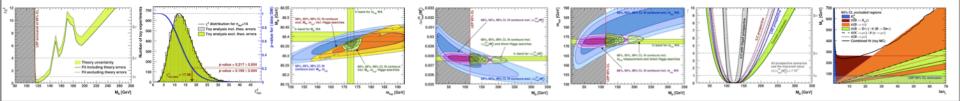
The Two-Higgs-Doublet Model (2HDM)

If you are interested in the 2HDM results, please attend Max Baak's talk in the "Beyond-SM" session

What's Next?

0

Θ


6

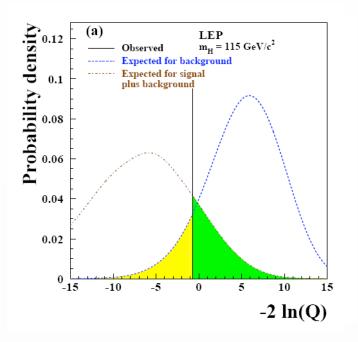
0

What's Next?

http://cern.ch/Gfitter

- Gfitter is growing:
 - New members: Max Baak, Matthias Schott (CERN), and Doerthe Ludwig (DESY)
- Maintain SM package in line with experimental and theoretical progress
- Maintain and improve Gfitter core package, improve fitter efficiency
- Extend SM fit to "oblique" parameters ($\varepsilon_{1,2,3}$ and S, T, U)
 - For SM fit and Little Higgs corrections and more new physics models
- Maintain and extend 2HDM package
 - Extend to more rare decays
- Long-term goal: MSSM

Backup


1

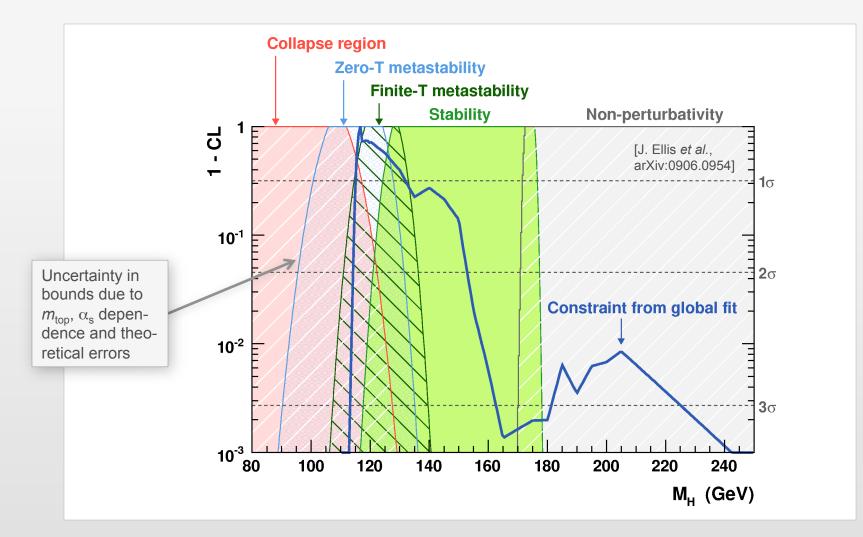
e

14

Using Direct Higgs Searches in Fit

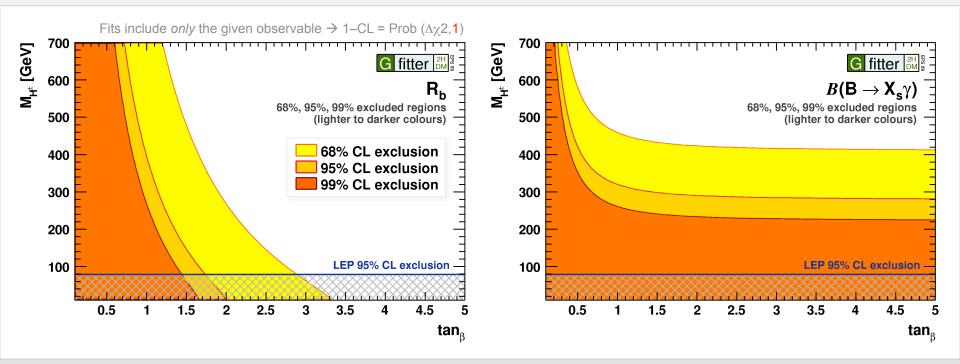
The collaborations quantify the level of agreement of the data with the "s+b" hypothesis by CL_{s+b} using toy MC experiments

For insertion in fit:


- Only the tail of large values is integrated (corresponds to "too few Higgs-like events" in simple counting experiment)
- In the SM fit, we are interested in any kind of deviation from the "s+b" hypothesis (including the case of "too many Higgs-like events")
- Transform 1-sided into 2-sided CL:

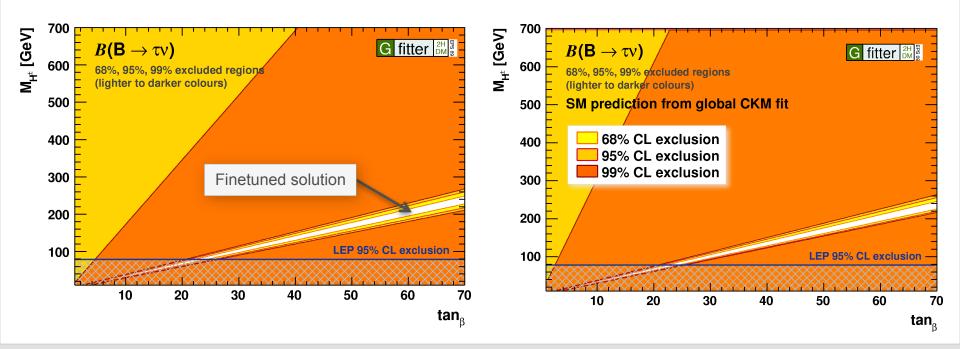
for: $CL_{s+b} \le 0.5$: $CL_{s+b}^{[2-sided]} = 2 CL_{s+b}$ for: $CL_{s+b} > 0.5$: $CL_{s+b}^{[2-sided]} = 2 (1 - CL_{s+b})$

Transform into a contribution to χ^2 via: $\delta \chi^2 = \text{Erf}^{-1} \left(1 - \text{CL}_{S+B}^{2-\text{sided}} \right)$

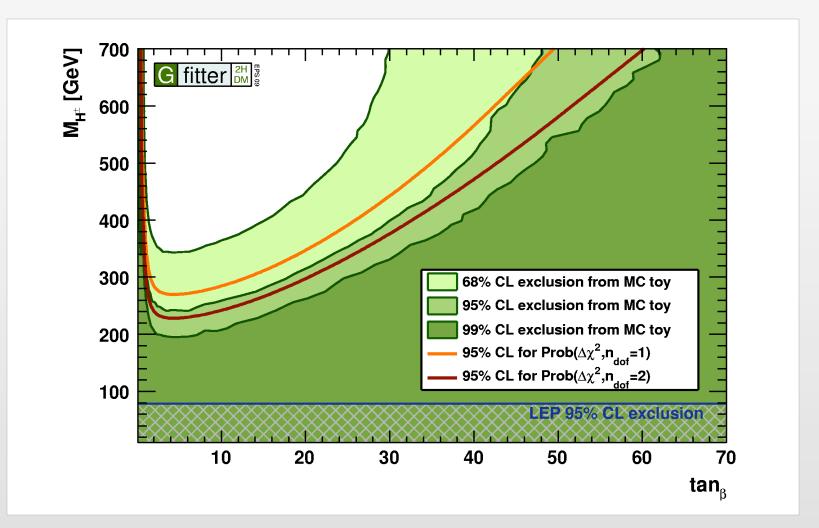

Driving the SM to *M*_{Planck}

At M_{Planck}, the following bounds are obtained, depending on stability criterion

Extend SM by adding another scalar Higgs doublet (2HDM):


- Type-II 2HDM: one doublet couples to up-type, one doublet couples to down-type quarks
- 6 free parameters: $M_{H\pm}$, M_{A0} , M_{H0} , $\underline{M}_{\underline{h}}$, $\tan\beta = v_2 / v_1$, α (governing $h-H^0$ mixing)
- So far: only looked at processes sensitive to charged Higgs: $M_{H\pm}$, tan β :
 - $Z \rightarrow bb$ width ratio: R_b^0
 - Radiative and leptonic meson decays: $B \rightarrow X_s \gamma$, $B \rightarrow \mu \nu / \tau \nu$, $K \rightarrow \mu \nu / \pi \rightarrow \mu \nu$
 - Semi-leptonic *B* decay: $B \rightarrow D\tau v$

Tension (2.4 σ) in $B \rightarrow \tau v$ branching fraction between measurement and SM


- Measurement: $BR(B \rightarrow \tau \nu) = (1.73 \pm 0.35) \times 10^{-4}$ [BABAR + Belle average, FPCP 2009]
- Theoretical prediction: $BR(B \rightarrow \tau \nu) \sim (m_{\tau} f_B |V_{ub}|)^2$ use: $f_B = (190 \pm 13) \text{ MeV}$ [HPQCD 2009 using NRQCD, Davies at FPCP'09]] $|V_{ub}| = (3.70 \pm 0.33) \times 10^{-3}$ [using incl. + excl. averages from HFAG 2009]

 $BR(B \to \tau \nu) = (0.87 ^{+0.21}_{-0.18}) \times 10^{-4} \text{ [using above values for } f_B \text{ and } |V_{ub}|\text{]}$ $BR(B \to \tau \nu) = (0.80 ^{+0.15}_{-0.09}) \times 10^{-4} \text{ [using global CKM fit, CKMfitter Group FPCP 2009]}$

2HDM – Combined Fit

$M_{H\pm}$ > 270 GeV (95% CL). Strong exclusion for large tan β from $B \rightarrow \tau v$

EPS – 2009, Krakow