Top Quark Mass Measurement at CDF and Tevatron Combination

Jacob Linacre (University of Oxford) On behalf of the CDF Collaboration

EPS HEP 2009

16-22 July 2009 Krakow, Poland

Why measure *m*_t?

- Top mass, *m*_t, is fundamental parameter of Standard Model
- Electroweak mass corrections $\propto m_{\rm t}^2$ and $\ln(m_{\rm H})$

$$-\frac{W}{D_{b}} - \frac{W}{D_{c}} - \frac{W}{W} + \frac{W}{$$

- Precision measurements of m_W and m_t give constraints on SM m_H
 - consistency test of the SM
 - new physics?

Tevatron

- Top quark produced only at Tevatron (discovered 1995)
- $p\overline{p}$ collisions at 1.96 TeV
- Peak lumi ~3.5×10³² cm² s⁻¹
- ~6 fb⁻¹ delivered to tape
- Analyses here use up to 3.2 fb⁻¹

Collider Run II Integrated Luminosity

CDF detector Interaction point Silicon vertex detector Tracking chamber Solenoid р EM calorimeter Hadron calorimeter Muon system

Top quark

- Dominantly produced in pairs (strong interaction)
- t decays before it can hadronize
- Mass can be directly measured from daughter particles
- Dominant decay t \rightarrow Wb with $W \rightarrow qq$ or $W \rightarrow \ell_V$
- Measurement uses pair events so three possible scenarios:

Channel	Branching Ratio
dilepton	11%
lepton+jets	44%
all hadronic	44%

Measurement challenges

- Top events rare: $\sigma_{t\bar{t}}/\sigma_{p\bar{p}} \simeq 10^{-10}$, event selection important
- **Background processes** can mimic $t\overline{t}$, contaminate sample
- **Combinatorics**: Detector can ID e, µ, but which jets came from which parton?
- Neutrinos not detected: missing kinematic information
- Jet reconstruction
 - Measurement requires knowledge of quark momenta
 - Large jet energy scale (JES) uncertainties in jet reconstruction (right)
- Define $\Delta_{\text{JES}} = \text{JES correction}$
 - $\Delta_{\rm JES}$ constrained via invariant mass of jets from W boson
 - Measure Δ_{JES} simultaneously
 - Large systematic JES uncertainty replaced by smaller statistical Δ_{JES} uncertainty

Event selection

- Use Secondary Vertex b-tagging to identify b-jets
 - reduces # jet-parton assigments and reduces background fraction
- Event selection tuned to the decay signatures of the 3 channels
- Typical event selection criteria:

All hadronic

- No lepton
- Little missing E_T
- ≥ 6 jets $E_T > 15$
- ≥ 1 b-tag

Lepton+jets

- e or μ , E_T>20
- Missing E_T
- 4 jets $E_T > 20$
- ≥ 1 b-tag

Dilepton

- 2 leptons (e or μ)
- Missing E_T
- \geq 2 jets E_T>15
- ≥ 1 b-tag
- Often use additional Neural Net event selection to minimise background fraction while maintaining signal efficiency

Methods: overview

Template Methods

- Choose observable(s) X sensitive to m_t
- Create 'templates', simulated distributions of X for different true m_t
- Simulated distributions from Monte Carlo events for predicted signal and background processes
- Measurement based on which *m*_t template(s) gives best fit to observed data
- Few assumptions

Matrix Element (ME) Methods

• Calculate m_t -dependent p.d.f. for each event *i* with observables \vec{x}_i

$$P_i(\vec{x}_i) = \frac{1}{N} \int \mathrm{TF}(\vec{x}_i \mid \vec{y}_i) d\sigma(\vec{y}_i)$$

• LO differential $p\overline{p} \rightarrow t\overline{t}$ x-section $d\sigma \propto |\mathcal{M}|^2$

• $|\mathcal{M}|^2$ sensitive to $m_{\rm t}$

- Transfer Function maps measured quantities \vec{x}_i to parton-level quantities \vec{y}_i
- *m*_t from maximisation of the joint likelihood

$$L(\mathbf{x} \mid m_t) = \prod_{\text{events}} P_i(\vec{x}_i \mid m_t)$$

 Better statistical precision achieved by extracting more information from each event

All-hadronic, Template

- Large QCD multi-jet background
- Jet-parton assignment from permutation with lowest χ^2 (kinematic fitter)
- Calculate invariant masses m_t^{reco} , m_w^{reco}
 - In-situ JES calibration via m_w
- Construct $m_{\rm t}$ & $\Delta_{\rm JES}$ dependent templates from fit to MC signal and background events
- Measurement with 2.9 fb⁻¹; stat. dominated

Lepton+jets, Matrix Element

- W+4 jets, QCD multi-jet backgrounds
- Sum jet-parton permutations in each event
 - perm. weight w_j based on b-tagging info

$$P_{i}(\vec{x}_{i} \mid m_{t}, \Delta_{\text{JES}}) = \frac{1}{N} \sum_{perm} w_{j} \int \text{TF}(\vec{x}_{i} \mid \vec{y}_{i}, \Delta_{\text{JES}}) d\sigma(\vec{y}_{i})$$

- neutrino p_z unconstrained: $d\sigma$ includes dp_z^{ν}
- Include Δ_{JES} dependence in $\text{TF}(\vec{x}_i | \vec{y}_i, \Delta_{\text{JES}})$ for simultaneous measurement
- Measurement with 3.2 fb⁻¹; syst. dominated CDF Run II Preliminary 3.2 fb⁻¹

0.9

07

10

Dilepton, Matrix Element

- Dominant background Drell-Yan: Z→e⁺e⁻, Z→µ⁺µ⁻ Also W+jets with 'fake' lepton
- Two neutrinos: underconstrained kinematics
 - Integrate over unknowns (no additional assumptions, ME method strength)
- No in-situ JES calibration (no hadronic W decay)
- Measurement with 2.0 fb⁻¹ data

$$m_t = 171.2 \pm 2.7 \text{ (stat)} \pm 2.9 \text{ (syst)} \text{ GeV/c}^2$$

2.5 GeV/c² from

JES uncertainty

CDF Run II Preliminary (2.0 fb⁻¹)

(a) 4 - 18

16

14

12

Lepton p_T, Template

- Template method using lepton transverse momentum (p_T)
 - minimal JES dependence (only affects event selection)

Systematic uncertainties

- Overall uncertainty on *m*_t dominated by systematics
- Continually working on improvements
 - May be some double counting
 - Colour reconnection recently added
 - Some effects only roughly described (eg colour reconnection)

Example systematic uncertainties

Systematic source (Lepton+jets, ME)	Systematic uncertainty (GeV/c ²)		
MC generator	0.5		
Background	0.5		
Residual JES	0.5		
b-jet JES	0.4		
Colour reconnection	0.4		
ISR and FSR	0.3		
Lepton P _T uncertainty	0.2		
PDFs	0.2		
Method calibration	0.2		
Multiple hadron interactions	0.1		
Total	1.1		

CDF combination

- Combine best measurements from each channel, taking correlations into account
- Run IIa goal easily surpassed

Tevatron combination

 Combine CDF and DØ measurements, taking correlations into account

Parameter	Value (GeV/ c^2)	Correlations
$M_{\rm t}^{\rm all-j}$	175.1 ± 2.6	1.00
$M_{\rm t}^{\rm l+j}$	172.7 ± 1.3	0.20 1.00
$M_{\rm t}^{{ m di-l}}$	171.4 ± 2.7	0.19 0.50 1.00

• Results are all consistent (χ^2 prob 79%)

 $m_t = 173.12 \pm 0.65 \text{ (stat)} \pm 1.07 \text{ (syst)} \text{ GeV/c}^2$

 $m_t = 173.12 \pm 1.25 \text{ (total) } \text{GeV/c}^2$

- $m_{\rm t}$ known within 0.7%
- Total uncertainty approaching 1 GeV/c²

Relative weight in Tevatron combination

@ 68% CL with 8 fb⁻¹ M_w [GeV] MSSN 80.50 0.5 80.40 DOBUNHI 0.4 80.30 SM [= 400 Ge1 0.3 MSSM Corpunitati both models 80.20 Heinemeyer, Hollik, Stockinger, Weber, Weiglein 0.2 165 160 175 180 170 m, [GeV] OF RUNIHI INITHI COF RUNIL AY DORUNHAII COF Puntalt' CDF RUNH dil CDF BUNI dil DO Punidil 0.1 For more see www-cdf.fnal.gov 0.0 www-d0.fnal.gov Analysis

80.70

Tevatron combination

experimental errors 68% CL:

Backup

1			
17/07/09			

17

L_{xy} and Lepton p_T (lepton+jets)

- Template method using quantities with minimal JES dependence
 - L_{xy}: transverse decay length of b-tagged jets (SecVtx)
 - **Lepton p_T**: transverse momentum of the lepton
 - Signal:Background ~5:1 W+jets dominant background

- Little correlation with lepton+jets ME measurement: improves world average m_t
- Limited by statistics. No longer an issue at LHC & could become competitive.

approx uncorrelated:

combine measurements

for improved precision

Soft muon tagger, template

- Take lepton+jets events with semi-leptonic decay of one bquark to a muon
 - "soft muon tag"
- Template based on invariant mass between the lepton from the W decay, and the muon from the b-quark decay
- Independent of JES
- Signal:Background ~2:1
 - W+jets dominant background
- Measurement with 2.0 fb⁻¹, 240 events
 - Stat dominated, useful at LHC

 $m_t = 181.3 \pm 12.4 \text{ (stat)} \pm 3.5 \text{ (syst)} \text{ GeV/c}^2$

systematics

- MC Generator
- Method is calibrated using signal MC from Pythia generator. Systematic taken as difference in result between Pythia and the Herwig generator.
- **Residual JES** Systematics associated with each level of the JES jet corrections, summed in quadrature

b jet energies varied by $\pm 1\%$ in MC

- Colour Reconnection Difference between two Pythia MC samples, tune Apro (no CR) and tune ACRpro (includes CR)
- b-jet Energy
- Background
- Vary background composition and fraction **ISR/FSR** Difference in result in MC with more or less I&FSR
- Multiple Hadron Interaction Systematic associated with mismodelling of luminosity profile in MC
- **PDFs**
- Lepton Energy
- Method Calibration
- Difference in MC using difference PDFs
- Electrons and muons shifted ± 1 sigma in MC
- Uncertainty associated with method calibration

transfer functions

Probability that parton quantity 'y' resulted in measured quantity 'x'

- Primarily account for detector resolution
- Taken from fit to Monte-Carlo ttbar events (known 'x' and 'y')
- Allow for JES correction Δ_{JES}

$$W\left(\vec{x}, \vec{y}; \Delta_{\text{JES}}\right) = \delta^3 \left(p_l^y - p_l^x\right) \prod_{i=1}^4 W_E\left(E_i^x, E_i^y; \Delta_{\text{JES}}\right) \prod_{i=1}^4 \frac{1}{E_i^x p_i^x} W_A\left(\Omega_i^x, \Omega_i^y\right)$$

lepton assumed well measured

jet angle TF (next slide)

background events

- Example for lepton+jets channel
- Numbers used to create pseudo-experiments and calibrate method
- Also used to create templates (template method)
- Expected signal fraction 76%

Sample	Expected events
Wbb	39.01 ± 12.72
Wcc	20.33 ± 6.72
Wc	10.74 ± 3.55
W+jets	22.52 ± 5.72
Non-W	25.04 ± 20.53
single top (s chan)	3.29 ± 0.32
single top (t chan)	3.33 ± 0.28
WW diboson	4.20 ± 0.54
WZ diboson	1.45 ± 0.17
ZZ diboson	0.35 ± 0.05
Z + light flavour	3.89 ± 0.48
ttbar signal	425.02 ± 58.86
Total Prediction	559.15 ± 66.99
Total Observed	578

Event sample summary

	All hadronic		Lepton+jets			Dilepton	
# b-tags	1 tag	≥2 tags	0 tags	1tag	≥2 tags	0 tags	≥1 tag
N _{acc} (~3 fb ⁻¹)	3452	441	N/A	459	119	246	98
Signal:Bkg	1:4	1:1	<1:1	2.5:1	10:1	1:4	4:1
# combos	30	6	12	6	2	2	2