NLO CORRECTIONS WITH THE OPP METHOD ${ }^{1}$

Costas G. Papadopoulos

NCSR "Demokritos", Athens

July 17, 2009, Krakow, Poland

[^0]
Outline

(1) Introduction: Wishlists and Troubles
(2) OPP Reduction

- Rational terms
(3) Automated 1-Loop
- HELAC 1-loop
(4) Outlook

Introduction: LHC needs NLO

- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms Alpgen, HELAC, MadEvent, SHERPA, etc.

Introduction: LHC needs NLO

- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms Alpgen, HELAC, MadEvent, SHERPA, etc.
- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)

Introduction: LHC needs NLO

- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms Alpgen, HELAC, MadEvent, SHERPA, etc.
- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)

Introduction: LHC needs NLO

- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms Alpgen, HELAC, MadEvent, SHERPA, etc.
- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)

Introduction: LHC needs NLO

- In the last years we have seen a remarkable progress in the theoretical description of multi-particle processes at tree-order, thanks to very efficient recursive algorithms Alpgen, HELAC, MadEvent, SHERPA, etc.
- The experimental programs of LHC require high precision predictions for multi-particle processes (also ILC of course)
- The current need of precision goes beyond tree order. At LHC, most analyses require at least next-to-leading order calculations (NLO)
- As a result, a big effort has been devoted by several groups to the problem of an efficient computation of one-loop corrections for multi-particle processes!

NLO Wishlist Les Houches

[from G. Heinrich's Summary talk]

Wishlist Les Houches 2007
1. $p p \rightarrow V V+$ jet
2. $p p \rightarrow t \bar{t} b \bar{b}$
3. $p p \rightarrow t \bar{t}+2$ jets
4. $p p \rightarrow W W W$
5. $p p \rightarrow V V b \bar{b}$
6. $p p \rightarrow V V+2$ jets
7. $p p \rightarrow V+3$ jets
8. $p p \rightarrow t \bar{t} b \bar{b}$
9. $p p \rightarrow 4$ jets

Processes for which a NLO calculation is both desired and feasible Will we "finish" in time for LHC?

What has been done? (2005-2009)

Some recent results \rightarrow Cross Sections available

- $p p \rightarrow Z Z Z p p \rightarrow t \bar{t} Z$ [Lazopoulos, Melnikov, Petriello]
- $p p \rightarrow H+2$ jets [Campbell, et al., J. R. Andersen, et al.]
- $p p \rightarrow V V+2$ jets via VBF [Bozzi, Jäger, Oleari, Zeppenfeld]
- $p p \rightarrow V V+1$ jet [S. Dittmaier, S. Kallweit and P. Uwer]
- $p p \rightarrow t \bar{t}+1$ jet [S. Dittmaier, P. Uwer and S. Weinzierl]
- pp $\rightarrow V V V$ [Binoth, Ossola, Papadopoulos, Pittau and Campanario et al.]

Mostly $2 \rightarrow 3$, very few $2 \rightarrow 4$ complete calculations.

- $e^{+} e^{-} \rightarrow 4$ fermions [Denner, Dittmaier, Roth]
- $e^{+} e^{-} \rightarrow H H \nu \bar{\nu}$ [GRACE group (Boudjema et al.)]
- $q \bar{q}+g g \rightarrow t \bar{t} b \bar{b}$ [Bredenstein et al.]

This is NOT a complete list
(A lot of work has been done at NLO \rightarrow calculations \& new methods)

What has been done? 2009

- R. K. Ellis, K. Melnikov and G. Zanderighi, "Generalized unitarity at work: first NLO QCD results for hadronic W^{+}3jet production," arXiv:0901.4101 [hep-ph]

What has been done? 2009

Figure 1: Inclusive $W^{+}+3$ jet cross-section at the LHC and the K-factor defined as $K=\sigma_{\mathrm{NLO}} / \sigma_{\mathrm{LO}}$ as a function of the renormalization and factorization scales. Jets are defined with k_{T} algorithm with $R=0.7$ and $p_{T}>50 \mathrm{GeV}$. Jet rapidities satisfy $|\eta|<3$. The LO and NLO cross-sections are computed with CTEQ6L1 and CTEQ6M parton distributions, respectively.

What has been done? 2009

- C. F. Berger et al., "Precise Predictions for $W+3$ Jet Production at Hadron Colliders," arXiv:0902.2760 [hep-ph]

What has been done? 2009

FIG. 3: The theoretical prediction for the H_{T} distribution in $W+3$-jet production. The curves and bands are labeled as in fig. 2.

Methods available before OPP

Methods available before OPP

Traditional Method: Feynman Diagrams \& Passarino-Veltman Reduction:

- general applicability, major achievements
- but major problem: not designed @ amplitude level, factorially growth in complexity
- heavily based on computer-algebra simplifications

Methods available before OPP

Traditional Method: Feynman Diagrams \& Passarino-Veltman Reduction:

- general applicability, major achievements
- but major problem: not designed @ amplitude level, factorially growth in complexity
- heavily based on computer-algebra simplifications

Unitarity Method: Gluing tree-amplitudes

- limited applicability
- on the positive side designed @ amplitude level
- based also heavily on analytic calculations

OPP Reduction - Intro

G. Ossola., C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763, 147 (2007) - arXiv:hep-ph/0609007 and JHEP 0707 (2007) 085 - arXiv:0704.1271 [hep-ph] R. K. Ellis, W. T. Giele and Z. Kunszt, JHEP 0803, 003 (2008)

Any m-point one-loop amplitude can be written, before integration, as

$$
A(\bar{q})=\frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

A bar denotes objects living in $n=4+\epsilon$ dimensions

$$
\begin{gathered}
\bar{D}_{i}=\left(\bar{q}+p_{i}\right)^{2}-m_{i}^{2} \\
\bar{q}^{2}=q^{2}+\tilde{q}^{2} \\
\bar{D}_{i}=D_{i}+\tilde{q}^{2}
\end{gathered}
$$

External momenta p_{i} are 4-dimensional objects

The OLD "MASTER" FORMULA

$$
\begin{aligned}
\int A & =\int \frac{\bar{N}(\bar{q})}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \\
& =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1} d\left(i_{0} i_{1} i_{2} i_{3}\right) D_{0}\left(i_{0} i_{1} i_{2} i_{3}\right) \\
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1} c\left(i_{0} i_{1} i_{2}\right) C_{0}\left(i_{0} i_{1} i_{2}\right) \\
& +\sum_{i_{0}<i_{1}}^{m-1} b\left(i_{0} i_{1}\right) B_{0}\left(i_{0} i_{1}\right) \\
& +\sum_{i_{0}}^{m-1} a\left(i_{0}\right) A_{0}\left(i_{0}\right) \\
& + \text { rational terms }
\end{aligned}
$$

OPP "MASTER" FORMULA - I

General expression for the 4-dim $N(q)$ at the integrand level in terms of D_{i}. "Cut-constructible" (CC) part of the amplitude: the one expressed in terms of scalar integrals.

OPP "MASTER" FORMULA - I

General expression for the $4-\operatorname{dim} N(q)$ at the integrand level in terms of D_{i}. "Cut-constructible" (CC) part of the amplitude: the one expressed in terms of scalar integrals.

$$
\begin{aligned}
N(q) & =\sum_{i_{0}<i_{1}<i_{1}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{i}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{i}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i} \\
& +\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

OPP "MASTER" FORMULA - II

$$
\begin{aligned}
& N(q)=\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right) \quad \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}+\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)\right.\right. \\
&+\sum_{i \neq i_{0}, i_{1}, i_{2}}^{m-1}\left[b\left(i_{0} i_{1}\right)\right. \\
& i_{i}<i_{1}
\end{aligned}
$$

- The quantities $d\left(i_{0} i_{1} i_{2} i_{3}\right)$ are the coefficients of 4 -point functions with denominators labeled by i_{0}, i_{1}, i_{2}, and i_{3}.
- $c\left(i_{0} i_{1} i_{2}\right), b\left(i_{0} i_{1}\right), a\left(i_{0}\right)$ are the coefficients of all possible 3-point, 2-point and 1-point functions, respectively.

OPP "MASTER" FORMULA - II

$$
\begin{aligned}
N(q)= & \sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}+\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

The quantities $\tilde{d}, \tilde{c}, \tilde{b}$, \tilde{a} are the "spurious" terms

- They still depend on q (integration momentum)
- They should vanish upon integration

What is the explicit expression of the spurious term?

Spurious Terms - I

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

- Express any q in $N(q)$ as

$$
q^{\mu}=-p_{0}^{\mu}+\sum_{i=1}^{4} G_{i} \ell_{i}^{\mu}, \ell_{i}^{2}=0
$$

$$
\begin{gathered}
k_{1}=\ell_{1}+\alpha_{1} \ell_{2}, \quad k_{2}=\ell_{2}+\alpha_{2} \ell_{1}, \quad k_{i}=p_{i}-p_{0} \\
\left.\left.\ell_{3}{ }^{\mu}=<\ell_{1}\left|\gamma^{\mu}\right| \ell_{2}\right], \ell_{4}^{\mu}=<\ell_{2}\left|\gamma^{\mu}\right| \ell_{1}\right]
\end{gathered}
$$

- The coefficients G_{i} either reconstruct denominators D_{i}
\rightarrow They give rise to d, c, b, a coefficients

Spurious Terms - I

Following F. del Aguila and R. Pittau, arXiv:hep-ph/0404120

- Express any q in $N(q)$ as

$$
q^{\mu}=-p_{0}^{\mu}+\sum_{i=1}^{4} G_{i} \ell_{i}^{\mu}, \ell_{i}^{2}=0
$$

$$
\begin{gathered}
k_{1}=\ell_{1}+\alpha_{1} \ell_{2}, \quad k_{2}=\ell_{2}+\alpha_{2} \ell_{1}, \quad k_{i}=p_{i}-p_{0} \\
\left.\left.\ell_{3}^{\mu}=<\ell_{1}\left|\gamma^{\mu}\right| \ell_{2}\right], \ell_{4}^{\mu}=<\ell_{2}\left|\gamma^{\mu}\right| \ell_{1}\right]
\end{gathered}
$$

- The coefficients G_{i} either reconstruct denominators D_{i} or vanish upon integration
\rightarrow They give rise to d, c, b, a coefficients \rightarrow They form the spurious $\tilde{d}, \tilde{c}, \tilde{b}, \tilde{a}$ coefficients

Spurious Terms - II

- $\tilde{d}(\mathrm{q})$ term (only 1)

$$
\tilde{d}(q)=\tilde{d} T(q),
$$

where \tilde{d} is a constant (does not depend on q)

$$
T(q) \equiv \operatorname{Tr}\left[\left(\phi+p_{0}\right) \phi_{1} \ell_{2} k_{3} \gamma_{5}\right]
$$

Spurious Terms - II

- $\tilde{d}(\mathrm{q})$ term (only 1)

$$
\tilde{d}(q)=\tilde{d} T(q),
$$

where \tilde{d} is a constant (does not depend on q)

$$
T(q) \equiv \operatorname{Tr}\left[\left(\phi+\phi_{0}\right) \ell_{1} \not \ell_{2} k_{3} \gamma_{5}\right]
$$

- $\tilde{c}(q)$ terms (they are 6)

$$
\tilde{c}(q)=\sum_{j=1}^{j_{\max }}\left\{\tilde{c}_{1 j}\left[\left(q+p_{0}\right) \cdot \ell_{3}\right]^{j}+\tilde{c}_{2 j}\left[\left(q+p_{0}\right) \cdot \ell_{4}\right]^{j}\right\}
$$

In the renormalizable gauge, $j_{\max }=3$

Spurious Terms - II

- $\tilde{d}(\mathrm{q})$ term (only 1)

$$
\tilde{d}(q)=\tilde{d} T(q),
$$

where \tilde{d} is a constant (does not depend on q)

$$
T(q) \equiv \operatorname{Tr}\left[\left(\phi+\phi_{0}\right) \ell_{1} \not \ell_{2} k_{3} \gamma_{5}\right]
$$

- $\tilde{c}(q)$ terms (they are 6)

$$
\tilde{c}(q)=\sum_{j=1}^{j_{\max }}\left\{\tilde{c}_{1 j}\left[\left(q+p_{0}\right) \cdot \ell_{3}\right]^{j}+\tilde{c}_{2 j}\left[\left(q+p_{0}\right) \cdot \ell_{4}\right]^{j}\right\}
$$

In the renormalizable gauge, $j_{\max }=3$

- $\tilde{b}(\mathrm{q})$ and $\tilde{a}(\mathrm{q})$ give rise to 8 and 4 terms, respectively

General strategy

Now we know the form of the spurious terms:

$$
\begin{aligned}
N(q) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}+\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

Our calculation is now reduced to an algebraic problem

General strategy

Now we know the form of the spurious terms:

$$
\begin{aligned}
N(q) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}+\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

Our calculation is now reduced to an algebraic problem
Extract all the coefficients by evaluating $\mathrm{N}(\mathrm{q})$ for a set of values of the integration momentum q

General strategy

Now we know the form of the spurious terms:

$$
\begin{aligned}
N(q)= & \sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} D_{i}+\sum_{i_{0}}^{m-1}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] \prod_{i \neq i_{0}}^{m-1} D_{i}
\end{aligned}
$$

Our calculation is now reduced to an algebraic problem
Extract all the coefficients by evaluating $N(q)$ for a set of values of the integration momentum q

There is a very good set of such points: Use values of q for which a set of denominators D_{i} vanish \rightarrow The system becomes "triangular": solve first for 4 -point functions, then 3 -point functions and so on

ExAMPLE

$$
\begin{aligned}
N(q) & =d+\tilde{d}(q)+\sum_{i_{0}<i_{1}<i_{2}}^{3}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] D_{i_{3}} \\
& +\sum_{i_{0}<i_{1}}^{3}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] D_{i_{2}} D_{i_{3}} \\
& +\sum_{i_{0}=0}^{3}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] D_{i_{1}} D_{i_{2}} D_{i_{3}}
\end{aligned}
$$

We look for a q of the form $q^{\mu}=-p_{0}^{\mu}+x_{i} \ell_{i}^{\mu}$ such that

$$
D_{0}=D_{1}=D_{2}=D_{3}=0
$$

\rightarrow we get a system of equations in x_{i} that has two solutions $q_{0}^{ \pm}$
Unitarity-like solution is derived not assumed!

Example

$$
N(q)=d+\tilde{d}(q)
$$

Our "master formula" for $q=q_{0}^{ \pm}$is:

$$
N\left(q_{0}^{ \pm}\right)=\left[d+\tilde{d} T\left(q_{0}^{ \pm}\right)\right]
$$

\rightarrow solve to extract the coefficients d and \tilde{d}
Unitarity-like solution is derived not assumed!

Example

$$
\begin{aligned}
N(q)-d-\tilde{d}(q) & =\sum_{i_{0}<i_{1}<i_{2}}^{3}\left[c\left(i_{0} i_{1} i_{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2}\right)\right] D_{i_{3}} \\
& +\sum_{i_{0}<i_{1}}^{3}\left[b\left(i_{0} i_{1}\right)+\tilde{b}\left(q ; i_{0} i_{1}\right)\right] D_{i_{2}} D_{i_{3}} \\
& +\sum_{i_{0}=0}^{3}\left[a\left(i_{0}\right)+\tilde{a}\left(q ; i_{0}\right)\right] D_{i_{1}} D_{i_{2}} D_{i_{3}}
\end{aligned}
$$

Then we can move to the extraction of coefficients using

$$
N^{\prime}(q)=N(q)-d-\tilde{d} T(q)
$$

and setting to zero three denominators (ex: $D_{1}=0, D_{2}=0, D_{3}=0$)
Unitarity-like solution is derived not assumed !

Example

$$
N(q)-d-\tilde{d}(q)=[c(0)+\tilde{c}(q ; 0)] D_{0}
$$

We have infinite values of q for which

$$
D_{1}=D_{2}=D_{3}=0 \quad \text { and } \quad D_{0} \neq 0
$$

\rightarrow Here we need 7 of them to determine $c(0)$ and $\tilde{c}(q ; 0)$
and so on for the b and a sectors
Unitarity-like solution is derived not assumed!

Rational Terms - I

- Is that possible that a 4-dimensional numerator produce rational terms?

$$
A(\bar{q})=\frac{N(q)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

Rational Terms - I

- Is that possible that a 4-dimensional numerator produce rational terms?

$$
A(\bar{q})=\frac{N(q)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

- Insert the expression for $N(q) \rightarrow$ we know all the coefficients

$$
N(q)=\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}[d+\tilde{d}(q)] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}[c+\tilde{c}(q)] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}+\cdots
$$

Rational Terms - I

- Is that possible that a 4-dimensional numerator produce rational terms?

$$
A(\bar{q})=\frac{N(q)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}}
$$

- Insert the expression for $N(q) \rightarrow$ we know all the coefficients

$$
N(q)=\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}[d+\tilde{d}(q)] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} D_{i}+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}[c+\tilde{c}(q)] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} D_{i}+\cdots
$$

- Finally rewrite all denominators using

$$
\frac{D_{i}}{\bar{D}_{i}}=\bar{Z}_{i}, \quad \text { with } \quad \bar{z}_{i} \equiv\left(1-\frac{\tilde{q}^{2}}{\bar{D}_{i}}\right)
$$

Rational Terms - II

Expand in D-dimensions ?

$$
\bar{D}_{i}=D_{i}+\tilde{q}^{2}
$$

Rational Terms - II

Expand in D-dimensions?

$$
\begin{aligned}
N(q) & =\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3} ; \tilde{q}^{2}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{D}_{i} \\
& +\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2} ; \tilde{q}^{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} \bar{D}_{i} \\
& +\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1} ; \tilde{q}^{2}\right)+\tilde{b}\left(q ; i_{0} i_{1} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i} \\
& +\sum_{i_{0}}^{m-1}\left[a\left(i_{0} ; \tilde{q}^{2}\right)+\tilde{a}\left(q ; i_{0} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}}^{m-1} \bar{D}_{i}+\tilde{P}(q) \prod_{i}^{m-1} \bar{D}_{i}
\end{aligned}
$$

Rational Terms - II

Expand in D-dimensions ?

$$
\begin{gathered}
N(q)=\sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3} ; \tilde{q}^{2}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{D}_{i} \\
+\sum_{i_{0}<i_{1}<i_{2}}^{m-1}\left[c\left(i_{0} i_{1} i_{2} ; \tilde{q}^{2}\right)+\tilde{c}\left(q ; i_{0} i_{1} i_{2} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}}^{m-1} \bar{D}_{i} \\
+\sum_{i_{0}<i_{1}}^{m-1}\left[b\left(i_{0} i_{1} ; \tilde{q}^{2}\right)+\tilde{b}\left(q ; i_{0} i_{1} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}}^{m-1} \bar{D}_{i} \\
+\sum_{i_{0}}^{m-1}\left[a\left(i_{0} ; \tilde{q}^{2}\right)+\tilde{a}\left(q ; i_{0} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}}^{m-1} \bar{D}_{i}+\tilde{P}(q) \prod_{i}^{m-1} \bar{D}_{i} \\
m_{i}^{2} \rightarrow m_{i}^{2}-\tilde{q}^{2}
\end{gathered}
$$

Rational Terms - II

Polynomial dependence on \tilde{q}^{2}

$$
b\left(i j ; \tilde{q}^{2}\right)=b(i j)+\tilde{q}^{2} b^{(2)}(i j), \quad c\left(i j k ; \tilde{q}^{2}\right)=c(i j k)+\tilde{q}^{2} c^{(2)}(i j k) .
$$

Rational Terms - II

Polynomial dependence on \tilde{q}^{2}

$$
\begin{aligned}
b\left(i j ; \tilde{q}^{2}\right) & =b(i j)+\tilde{q}^{2} b^{(2)}(i j), \quad c\left(i j k ; \tilde{q}^{2}\right)=c(i j k)+\tilde{q}^{2} c^{(2)}(i j k) . \\
\int d^{n} \bar{q} \frac{\tilde{q}^{2}}{\bar{D}_{i} \bar{D}_{j}} & =-\frac{i \pi^{2}}{2}\left[m_{i}^{2}+m_{j}^{2}-\frac{\left(p_{i}-p_{j}\right)^{2}}{3}\right]+\mathcal{O}(\epsilon), \\
\int d^{n} \bar{q} \frac{\tilde{q}^{2}}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k}} & =-\frac{i \pi^{2}}{2}+\mathcal{O}(\epsilon), \quad \int d^{n} \bar{q} \frac{\tilde{q}^{4}}{\bar{D}_{i} \bar{D}_{j} \bar{D}_{k} \bar{D}_{l}}=-\frac{i \pi^{2}}{6}+\mathcal{O}(\epsilon) .
\end{aligned}
$$

Rational Terms - II

Furthermore, by defining

$$
\mathcal{D}^{(m)}\left(q, \tilde{q}^{2}\right) \equiv \sum_{i_{0}<i_{1}<i_{2}<i_{3}}^{m-1}\left[d\left(i_{0} i_{1} i_{2} i_{3} ; \tilde{q}^{2}\right)+\tilde{d}\left(q ; i_{0} i_{1} i_{2} i_{3} ; \tilde{q}^{2}\right)\right] \prod_{i \neq i_{0}, i_{1}, i_{2}, i_{3}}^{m-1} \bar{D}_{i},
$$

the following expansion holds

$$
\mathcal{D}^{(m)}\left(q, \tilde{q}^{2}\right)=\sum_{j=2}^{m} \tilde{q}^{(2 j-4)} d^{(2 j-4)}(q),
$$

where the last coefficient is independent on q

$$
d^{(2 m-4)}(q)=d^{(2 m-4)} .
$$

Rational Terms - II

In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of \tilde{q}^{2}, in order to determine $b^{(2)}(i j)$, $c^{(2)}(i j k)$ and $d^{(2 m-4)}$.

$$
\begin{aligned}
\mathrm{R}_{1} & =-\frac{i}{96 \pi^{2}} d^{(2 m-4)}-\frac{i}{32 \pi^{2}} \sum_{i_{0}<i_{1}<i_{2}}^{m-1} c^{(2)}\left(i_{0} i_{1} i_{2}\right) \\
& -\frac{i}{32 \pi^{2}} \sum_{i_{0}<i_{1}}^{m-1} b^{(2)}\left(i_{0} i_{1}\right)\left(m_{i_{0}}^{2}+m_{i_{1}}^{2}-\frac{\left(p_{i_{0}}-p_{i_{1}}\right)^{2}}{3}\right)
\end{aligned}
$$

[^1]
Rational Terms - II

In practice, once the 4-dimensional coefficients have been determined, one can redo the fits for different values of \tilde{q}^{2}, in order to determine $b^{(2)}(i j)$, $c^{(2)}(i j k)$ and $d^{(2 m-4)}$.

$$
\begin{aligned}
\mathrm{R}_{1} & =-\frac{i}{96 \pi^{2}} d^{(2 m-4)}-\frac{i}{32 \pi^{2}} \sum_{i_{0}<i_{1}<i_{2}}^{m-1} c^{(2)}\left(i_{0} i_{1} i_{2}\right) \\
& -\frac{i}{32 \pi^{2}} \sum_{i_{0}<i_{1}}^{m-1} b^{(2)}\left(i_{0} i_{1}\right)\left(m_{i_{0}}^{2}+m_{i_{1}}^{2}-\frac{\left(p_{i_{0}}-p_{i_{1}}\right)^{2}}{3}\right) .
\end{aligned}
$$

G. Ossola, C. G. Papadopoulos and R. Pittau, arXiv:0802.1876 [hep-ph]

CuTtools publicly available code that is able to numerically evaluate both the CC and R_{1} terms.

Rational Terms - R_{2}

A different source of Rational Terms, called R_{2}, can also be generated from the ϵ-dimensional part of $N(q)$

$$
\begin{gathered}
\bar{N}(\bar{q})=N(q)+\tilde{N}\left(\tilde{q}^{2}, \epsilon ; q\right) \\
R_{2} \equiv \frac{1}{(2 \pi)^{4}} \int d^{n} \bar{q} \frac{\tilde{N}\left(\tilde{q}^{2}, \epsilon ; q\right)}{\bar{D}_{0} \bar{D}_{1} \cdots \bar{D}_{m-1}} \equiv \frac{1}{(2 \pi)^{4}} \int d^{n} \bar{q} \mathcal{R}_{2} \\
\bar{q}=q+\tilde{q}, \\
\bar{\gamma}_{\bar{\mu}}=\gamma_{\mu}+\tilde{\gamma}_{\tilde{\mu}}, \\
\bar{g}^{\bar{\mu} \bar{\nu}}=g^{\mu \nu}+\tilde{g}^{\tilde{\mu} \tilde{\nu}} .
\end{gathered}
$$

The R_{2} contribution for a given process, can be calculated in exactly the same way as the tree-order amplitude for that process, taken into account extra vertices.

Rational Terms - R_{2}

Only up to four-vertices are needed for the calculation of R_{2} for any number of external particles, as in the case of the usual counter-terms.

Rational Terms - R_{2}

Only up to four-vertices are needed for the calculation of R_{2} for any number of external particles, as in the case of the usual counter-terms.

Rational counterterms for QED

$$
\begin{aligned}
\mu^{\stackrel{p}{n}} & =-\frac{i e^{2}}{8 \pi^{2}} g_{\mu \nu}\left(2 m_{e}^{2}-p^{2} / 3\right) \\
\xrightarrow{p} & =\frac{i e^{2}}{16 \pi^{2}}\left(-p p+2 m_{e}\right) \\
& =\frac{i e^{4}}{12 \pi^{2}}\left(g_{\mu \nu} g_{\rho \sigma}+g_{\mu \rho} g_{\nu \sigma}+g_{\mu \sigma} g_{\nu \rho}\right)
\end{aligned}
$$

Rational Terms - R_{2}

Only up to four-vertices are needed for the calculation of R_{2} for any number of external particles, as in the case of the usual counter-terms.

In contrast to GKM-approach all calculations are in 4 dimensions - still producing fully d-dimensional answers.

NLO cROSS SECTION

From the OPP reduction to realistic calculations:

NLO cROSS SECTION

From the OPP reduction to realistic calculations:

$$
\begin{gathered}
\sigma_{m}^{N L O}=\int_{m} d \sigma^{B}+\int_{m+1}\left(d \sigma^{R}-d \sigma^{D}\right)_{\epsilon=0}+\int_{m}\left(d \sigma^{V}+d \sigma^{I}+d \sigma^{K P}\right)_{\epsilon=0} \\
d \sigma^{D}, d \sigma^{\prime}, d \sigma^{K P}
\end{gathered}
$$

in terms of m-particle Born matrix elements, Catani-Seymour

NLO cROSS SECTION

From the OPP reduction to realistic calculations:

$$
\begin{gathered}
\sigma_{m}^{N L O}=\int_{m} d \sigma^{B}+\int_{m+1}\left(d \sigma^{R}-d \sigma^{D}\right)_{\epsilon=0}+\int_{m}\left(d \sigma^{V}+d \sigma^{I}+d \sigma^{K P}\right)_{\epsilon=0} \\
d \sigma^{D}, d \sigma^{\prime}, d \sigma^{K P}
\end{gathered}
$$

in terms of m-particle Born matrix elements, Catani-Seymour We have extended HELAC:

NLO cROSS SECTION

From the OPP reduction to realistic calculations:

$$
\begin{gathered}
\sigma_{m}^{N L O}=\int_{m} d \sigma^{B}+\int_{m+1}\left(d \sigma^{R}-d \sigma^{D}\right)_{\epsilon=0}+\int_{m}\left(d \sigma^{V}+d \sigma^{I}+d \sigma^{K P}\right)_{\epsilon=0} \\
d \sigma^{D}, d \sigma^{\prime}, d \sigma^{K P}
\end{gathered}
$$

in terms of m-particle Born matrix elements, Catani-Seymour
We have extended HELAC:

- Virtual corrections HELAC-1L $d \sigma^{V}$
A. van Hameren , C.G. Papadopoulos, R. Pittau, arXiv:0903.4665 [hep-ph]

NLO cROSS SECTION

From the OPP reduction to realistic calculations:

$$
\begin{gathered}
\sigma_{m}^{N L O}=\int_{m} d \sigma^{B}+\int_{m+1}\left(d \sigma^{R}-d \sigma^{D}\right)_{\epsilon=0}+\int_{m}\left(d \sigma^{V}+d \sigma^{I}+d \sigma^{K P}\right)_{\epsilon=0} \\
d \sigma^{D}, d \sigma^{\prime}, d \sigma^{K P}
\end{gathered}
$$

in terms of m-particle Born matrix elements, Catani-Seymour
We have extended HELAC:

- Virtual corrections HELAC-1L $d \sigma^{V}$
A. van Hameren , C.G. Papadopoulos, R. Pittau, arXiv:0903.4665 [hep-ph]
- Real corrections HELAC-DIPoLES $d \sigma^{D}, d \sigma^{I}, d \sigma^{K P}$ M. Czakon, C.G. Papadopoulos, M. Worek, arXiv:0905.0883 [hep-ph]

HELAC 1-LOOP

HELAC-1L calculates virtual QCD corrections to any processes: example 6 external particles attached to the loop (decays do not count, so number of particles may be actually larger, i.e. $p p \rightarrow e^{+} \nu_{e}+3$ jets)

HELAC 1-LOOP

HELAC-1L calculates virtual QCD corrections to any processes: example 6 external particles attached to the loop (decays do not count, so number of particles may be actually larger, i.e. $p p \rightarrow e^{+} \nu_{e}+3$ jets)

$$
A(q)=\sum \frac{N_{i}^{(6)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{5}}}+\frac{N_{i}^{(5)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{4}}}+\ldots
$$

HELAC 1-LOOP

HELAC-1L calculates virtual QCD corrections to any processes: example 6 external particles attached to the loop (decays do not count, so number of particles may be actually larger, i.e. $p p \rightarrow e^{+} \nu_{e}+3$ jets)

$$
A(q)=\sum \frac{N_{i}^{(6)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{5}}}+\frac{N_{i}^{(5)}(q)}{\bar{D}_{i_{0}} \bar{D}_{i_{1}} \cdots \bar{D}_{i_{4}}}+\ldots
$$

In order to apply the OPP reduction method HELAC-1L should provide numerical evaluation of all these 'numerator' functions $N_{i}^{(6)}(q), N_{i}^{(5)}(q), \ldots$, for values of the loop-momentum q provided by CuTtools.

HELAC 1-LOOP

Generate all inequivalent partitions (permutations) of six, five, four, three, etc. blobs attached to the loop, and checking for all possible flavors (and colors) that can be consistently running inside

HELAC 1-LOOP

Hard cut to transform the problem to a (part) $n+2$ tree-order matrix element part (not to be confused with unitarity cuts)

128
64

Since now we have to evaluate a tree-order-like contribution, HELAC can trivially provide us with the right answer.

HELAC Color treatment

How color is treated in HELAC?

HELAC Color treatment

How color is treated in HELAC?
Color-connection representation (quarks and gluons treated uniformly)

helac Color treatment

How color is treated in HELAC?
Color-connection representation (quarks and gluons treated uniformly)

$$
\mathcal{M}_{j_{1}, j_{2}, \ldots, j_{k}}^{i_{1}, i_{k}, \ldots, i_{k}}=\sum_{\sigma} \delta_{i_{\sigma_{1}}, j_{1}} \delta_{i_{\sigma_{2}}, j_{2}} \ldots \delta_{i_{\sigma_{k}}, j_{k}} A_{\sigma}
$$

The delta's are the 'color structure' or color connection and the A_{σ} the 'lorentz' structure or color-stripped amplitudes.

helac Color treatment

How color is treated in HELAC ?
Color-connection representation (quarks and gluons treated uniformly)

$$
\mathcal{M}_{j_{1}, j_{2}, \ldots, j_{k}}^{i_{1}, i_{2}, \ldots, i_{k}}=\sum_{\sigma} \delta_{i_{\sigma_{1}}, j_{1}} \delta_{i_{\sigma_{2}}, j_{2}} \ldots \delta_{i_{\sigma_{k}}, j_{k}} A_{\sigma}
$$

The delta's are the 'color structure' or color connection and the A_{σ} the 'lorentz' structure or color-stripped amplitudes.

Important: there are Feynman rules, color-connection or color-flow FR, that allow the calculation of A_{σ}, once the 'color structure' is known.

HELAC Color treatment - 1 loop

Can we extend this color-connection langauge at one loop ?

HELAC Color treatment - 1 loop

Can we extend this color-connection langauge at one loop ?

The hard cut plays an important role, since we can still use all tree-order color-connection Feynman rules:

helac Color treatment - 1 loop

Can we extend this color-connection langauge at one loop ?
The hard cut plays an important role, since we can still use all tree-order color-connection Feynman rules:
$\delta_{i_{6}, j_{1}} \delta_{i_{1}, j_{2}} \delta_{i_{2}, j_{3}} \delta_{i_{3, j}, j_{4}} \delta_{i_{4}, j_{5}} \delta_{i_{5, j_{6}}}$

$$
\delta_{i_{8}, j_{1}} \delta_{i_{1}, j_{2}} \delta_{i_{2}, j_{3}} \delta_{i_{3}, j_{4}} \delta_{i_{4}, j_{5}} \delta_{i_{5}, j_{6}} \delta_{i_{6}, j_{7}} \delta_{i_{7}, j_{8}}
$$

helac Color treatment - 1 loop

Can we extend this color-connection langauge at one loop ?
The hard cut plays an important role, since we can still use all tree-order color-connection Feynman rules:
$\delta_{i_{1}, j_{1}} \delta_{i_{6}, j_{2}} \delta_{i_{2}, j_{3}} \delta_{i_{3}, j_{4}} \delta_{i_{4}, j_{5}} \delta_{i_{5}, j_{6}}$

32
$\delta_{i_{7}, j_{1}} \delta_{i_{8}, j_{2}} \delta_{i_{2}, j_{3}} \delta_{i_{3}, j_{4}} \delta_{i_{4}, j_{5}} \delta_{i_{5}, j_{6}} \delta_{i_{6}, j_{7}} \delta_{i_{1}, j_{8}}$

HELAC Color treatment - 1 loop

Can we extend this color-connection langauge at one loop ?

The hard cut plays an important role, since we can still use all tree-order color-connection Feynman rules:

Both 'planar' and 'non-planar' topologies have the same treatment! HELAC-1L calculates the full color contribution to the amplitude.

Large N_{c} is trivially also included, as an option, if required.

HELAC R2 COUNTER-TERMS

$$
\begin{aligned}
& \underset{\mu_{1}, a_{1}}{\frac{p}{\operatorname{coc}}{ }_{\mu_{2}, a_{2}}}=\frac{i g^{2} N_{\text {col }}}{48 \pi^{2}} \delta_{a_{1} a_{2}}\left[\frac{p^{2}}{2} g_{\mu_{1} \mu_{2}}+\lambda_{H V}\left(g_{\mu_{1} \mu_{2}} p^{2}-p_{\mu_{1}} p_{\mu_{2}}\right)\right. \\
& \left.+\frac{N_{f}}{N_{c o l}}\left(p^{2}-6 m_{q}^{2}\right) g_{\mu_{1} \mu_{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\operatorname{Tr}\left(\left\{t^{a_{1}} t^{a_{2}}\right\}\left\{t^{a_{3}} t^{a_{4}}\right\}\right)\left(5+2 \lambda_{H V}\right)\right] g_{\mu_{1} \mu_{2}} g_{\mu_{3} \mu_{4}} \\
& \left.+12 \frac{N_{f}}{N_{c o l}} \operatorname{Tr}\left(t^{a_{1}} t^{a_{2}} t^{a_{3}} t^{a_{4}}\right)\left(\frac{5}{3} g_{\mu_{1} \mu_{3}} g_{\mu_{2} \mu_{4}}-g_{\mu_{1} \mu_{2}} g_{\mu_{3} \mu_{4}}-g_{\mu_{2} \mu_{3}} g_{\mu_{1} \mu_{4}}\right)\right\} \\
& \xrightarrow[l]{\stackrel{p}{\longrightarrow}} \cdot \frac{i g^{2}}{16 \pi^{2}} \frac{N_{c o l}^{2}-1}{2 N_{c o l}} \delta_{k l}\left(-\not p+2 m_{q}\right) \lambda_{H V} \\
& \mu, a<\frac{i g^{3}}{16 \pi^{2}} \frac{N_{c o l}^{2}-1}{2 N_{c o l}} t_{k l}^{a} \gamma_{\mu}\left(1+\lambda_{H V}\right)
\end{aligned}
$$

HELAC R2 TERMS

$\int_{l}^{k}=-\frac{g^{2}}{16 \pi^{2}} \frac{N_{c o l}^{2}-1}{2 N_{c o l}} \delta_{k l} \gamma_{\mu}\left(v+a \gamma_{5}\right)\left(1+\lambda_{H V}\right)$
 $=\frac{i g^{2}}{8 \pi^{2}} \delta_{a_{1} a_{2}}\left(c_{1} c_{2}-d_{1} d_{2}\right) g_{a_{1} \alpha_{2}}$

HELAC 1-LOOP

HELAC 1-LOOP

(1) papadopo@ aiolos:/tmp - Shell - Konsole

HELAC 1－LOOP

R papadopo＠aiolos：／tmp－Shell－Konsole
回回回

INFO INFO	NUM	127	${ }_{35}^{\text {of }}$	143	15													
INFO	1	48	35	9	1	1	16	－8	5	32	8	6	0	0	0	0	1	1
INFO	3	112	3	10	1	1	48	35	9	64	3	7	0	0	0	1	1	1
INFO	3	112	3	10	0	1	48	35	9	64	3	7	0	0	0	2	1	1
INFO	1	12	35	11	1	1	4	－4	3	8	4	4	0	0	0	0	1	1
INFO	1	240	35	12	1	1	128	－3	8	112	3	10	0	0	0	0	－1	1
INFO	2	242	－3	13	1	1	240	35	12	2	－3	2	0	0	0	1	1	1
INFO	2	242	－3	13	0	1	240	35	12	2	－3	2	0	0	0	2	1	1
INFO	3	248	4	14	1	1	240	35	12	8	4	4	0	0	0	1	1	1
INFO	3	248	4	14	0	1	240	35	12	8	4	4	0	0	0	2	1	1
INFO	1	252	35	15	1	2	4	－4	3	248	4	14	0	0	0	0	1	1
INFO	4	252	35	15	2	2	12	35	11	240	35	12	0	0	0	0	1	1
INFO	2	254	－3	16	1	2	12	35	11	242	－3	13	0	0	0	1	1	1
INFO	2	254	－3	16	0	2	12	35	11	242	－3	13	0	0	0	2	1	1
INFO	2	254	－3	16	2	2	252	35	15	2	－3	2	0	0	0	1	1	1
INFO	2	254	－3	16	0	2	252	35	15	2	－3	2	0	0	0	2	1	1
INFO	2	48	15	3	3	0	0	0	0	0	0	0	0	0	0	0	2	5
INFOYY		5																
INFO	NUM	128	of	143	11													
INFO	1	12	35	7	1	1	4	－4	3	8	4	4	0	0	0	0	1	1
INFO	1	48	35	8	1	1	16	－8	5	32	8	6	0	0	0	0	1	1
INFO	2	28	－8	9	1	1	12	35	7	16	－8	5	0	0	0	1	1	1
INFO	2	28	－8	9	0	1	12	35	7	16	－8	5	0	0	0	2	1	1
INFO	3	56	4	10	1	1	48	35	8	8	4	4	0	0	0	1	1	1
INFO	3	56	4	10	0	1	48	35	8	8	4	4	0	0	0	2	1	1
INFO	1	60	35	11	1	3	4	－4	3	56	4	10	0	0	0	0	1	1
INFO	4	60	35	11	2	3	12	35	7	48	35	8	0	0	0	0	1	1
INFO	1	60	35	11	3	3	28	－8	9	32	8	6	0	0	0	0	1	1
INFO	25	62	－3	12	1	1	60	35	11	2	－3	2	0	0	0	1	1	1
INFO	25	62	－3	12	0	1	60	35	11	2	－3	2	0	0	0	2	1	1
INFO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

INFOYY 1
INFO NUM 129 of 14312
Costas G．Papadopoulos（Athens）OPP Reduction EPS HEP 2009 33／42

HELAC 1-LOOP

In summary

- For each color connection the solution of Dyson-Schwinger equation (expressing amplitude in terms of sub-amplitudes) is constructed (integer arithmetic). At the one-loop level the solution is composed by a number of structures that are treatable by CuTtools (OPP) $\left(\mathrm{CC}+R_{1}\right)$ and a number of tree-like counter-term structures $\left(R_{2}\right)$

HELAC 1-LOOP

In summary

- For each color connection the solution of Dyson-Schwinger equation (expressing amplitude in terms of sub-amplitudes) is constructed (integer arithmetic). At the one-loop level the solution is composed by a number of structures that are treatable by CuTtools (OPP) $\left(\mathrm{CC}+R_{1}\right)$ and a number of tree-like counter-term structures $\left(R_{2}\right)$
- When the phase-space information is available, using the solution above, the numerical evaluation of both the tree-order and one-loop amplitudes is performed

HELAC 1-LOOP

In summary

- For each color connection the solution of Dyson-Schwinger equation (expressing amplitude in terms of sub-amplitudes) is constructed (integer arithmetic). At the one-loop level the solution is composed by a number of structures that are treatable by CuTtools (OPP) $\left(\mathrm{CC}+R_{1}\right)$ and a number of tree-like counter-term structures $\left(R_{2}\right)$
- When the phase-space information is available, using the solution above, the numerical evaluation of both the tree-order and one-loop amplitudes is performed
- For a realistic calculation two main more ingredients are used: the helicity sampling resulting to a speed-up by a factor equal to the total number of helicity configurations and the color sampling resulting also to a huge reduction in time

HELAC 1-LOOP

In summary

- For each color connection the solution of Dyson-Schwinger equation (expressing amplitude in terms of sub-amplitudes) is constructed (integer arithmetic). At the one-loop level the solution is composed by a number of structures that are treatable by CuTtools (OPP) $\left(C C+R_{1}\right)$ and a number of tree-like counter-term structures $\left(R_{2}\right)$
- When the phase-space information is available, using the solution above, the numerical evaluation of both the tree-order and one-loop amplitudes is performed
- For a realistic calculation two main more ingredients are used: the helicity sampling resulting to a speed-up by a factor equal to the total number of helicity configurations and the color sampling resulting also to a huge reduction in time
- Leading color approximation is also an option

HELAC RESULTS

$p p \rightarrow t \bar{t} b b$			
$u \bar{u} \rightarrow t \bar{t} b \bar{b}$			
	ϵ^{-2}	ϵ^{-1}	ϵ^{0}
HELAC-1L	$-2.347908989000179 \mathrm{E}-07$	$-2.082520105681483 \mathrm{E}-07$	$3.909384299635230 \mathrm{E}-07$
$I(\epsilon)$	$-2.347908989000243 \mathrm{E}-07$	$-2.082520105665445 \mathrm{E}-07$	
$g g \rightarrow t \bar{t} b \bar{b}$			
HELAC-1L	$-1.435108168334016 \mathrm{E}-06$	$-2.085070773763073 \mathrm{E}-06$	$3.616343483497464 \mathrm{E}-06$
$I(\epsilon)$	$-1.435108168334035 \mathrm{E}-06$	$-2.085070773651439 \mathrm{E}-06$	

	p_{x}	p_{y}	p_{z}	E
$u(g)$	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
t	12.99421901255723	-9.591511769543683	75.05543670827210	190.1845561691092
\bar{t}	53.73271578143694	-0.2854146459513714	17.68101382654795	182.9642163285034
b	-41.57664370692741	3.895531135098977	-91.94931862397770	100.9874727883170
\bar{b}	-25.15029108706678	5.981395280396083	-0.7871319108423604	25.86375471407044

HELAC RESULTS

$p p \rightarrow V V b b$ and $p p \rightarrow V V+2$ jets			
$u \bar{u} \rightarrow W^{+} W^{-} b \bar{b}$			
	ϵ^{-2}	ϵ^{-1}	ϵ^{0}
HELAC-1L	$-2.493916939359002 \mathrm{E}-07$	$-4.885901774740355 \mathrm{E}-07$	$1.592538533368835 \mathrm{E}-07$
$I(\epsilon)$	$-2.493916939359001 \mathrm{E}-07$	$-4.885901774752593 \mathrm{E}-07$	
$g g \rightarrow W^{+} W^{-} b \bar{b}$			
HELAC-1L	$-2.686310592221201 \mathrm{E}-07$	$-6.078682316434646 \mathrm{E}-07$	$-2.431624440346638 \mathrm{E}-07$
$I(\epsilon)$	$-2.686310592221206 \mathrm{E}-07$	$-6.078682340168020 \mathrm{E}-07$	

	p_{x}	p_{y}	p_{z}	E
$u(g)$	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
W^{+}	22.40377113462118	-16.53704884550758	129.4056091248114	154.8819879118765
W^{-}	92.64238702192333	-0.4920930146078141	30.48443210132545	126.4095336206695
b	-71.68369328357026	6.716416578342183	-158.5329205583824	174.1159068988160
\bar{b}	-43.36246487297426	10.31272528177322	-1.357120667754454	44.59257156863792

HELAC RESULTS

$p p \rightarrow V+3$ jets			
$u \bar{d} \rightarrow W^{+} g g g$			
HELAC-1L	$-1.995636628164684 \mathrm{E}-05$	$-5.935610843551600 \mathrm{E}-05$	$-6.235576400719452 \mathrm{E}-05$
$I(\epsilon)$	$-1.995636628164686 \mathrm{E}-05$	$-5.935610843566534 \mathrm{E}-05$	
$u \bar{u} \rightarrow Z g g g$			
HELAC-1L	$-7.148261887172997 \mathrm{E}-06$	$-2.142170009323704 \mathrm{E}-05$	$-1.906378375774021 \mathrm{E}-05$
$I(\epsilon)$	$-7.148261887172976 \mathrm{E}-06$	$-2.142170009540120 \mathrm{E}-05$	

	p_{x}	p_{y}	p_{z}	E
$\frac{u}{d}$	0	0	250	250
W^{+}	23.90724239064912	-17.64681636854432	138.0897548661186	162.5391101447744
g	98.85942812363483	-0.5251163702879512	32.53017998659339	104.0753327455388
g	-76.49423931754684	7.167141557113385	-169.1717405928078	185.8004692730082
g	-46.27243119673712	11.00479118171890	-1.448194259904179	47.58508783667868

HELAC RESULTS

$p p \rightarrow t \bar{t}+2$ jets			
$u \bar{u} \rightarrow t \bar{t} g g$			
	ϵ^{-2}	ϵ^{-1}	ϵ^{0}
HELAC-1L	$-6.127108113312741 \mathrm{E}-05$	$-1.874963444741646 \mathrm{E}-04$	$-3.305349683690902 \mathrm{E}-04$
$I(\epsilon)$	$-6.127108113312702 \mathrm{E}-05$	$-1.874963445081074 \mathrm{E}-04$	
$g g \rightarrow t \bar{t} g g$			
HELAC-1L	$-3.838786514961561 \mathrm{E}-04$	$-9.761168899507888 \mathrm{E}-04$	$-5.225385984750410 \mathrm{E}-04$
$I(\epsilon)$	$-3.838786514961539 \mathrm{E}-04$	$-9.761168898436521 \mathrm{E}-04$	

	p_{x}	p_{y}	p_{z}	E
$u(g)$	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
t	12.99421901255723	-9.591511769543683	75.05543670827210	190.1845561691092
\bar{t}	53.73271578143694	-0.2854146459513714	17.68101382654795	182.9642163285034
g	-41.57664370692741	3.895531135098977	-91.94931862397770	100.9874727883170
g	-25.15029108706678	5.981395280396083	-0.7871319108423604	25.86375471407044

HELAC RESULTS

$p p \rightarrow b b b b$				
$u \bar{u} \rightarrow b \bar{b} b \bar{b}$				
	ϵ^{-2}	ϵ^{-1}	ϵ^{0}	
HELAC-1L	$-9.205269484951069 \mathrm{E}-08$	$-2.404679886692200 \mathrm{E}-07$	$-2.553568662778129 \mathrm{E}-07$	
$I(\epsilon)$	$-9.205269484951025 \mathrm{E}-08$	$-2.404679886707971 \mathrm{E}-07$		
$g g \rightarrow b b b b$				
HELAC-1L	$-2.318436429821683 \mathrm{E}-05$	$-6.958360737366907 \mathrm{E}-05$	$-7.564212339279291 \mathrm{E}-05$	
$I(\epsilon)$	$-2.318436429821662 \mathrm{E}-05$	$-6.958360737341511 \mathrm{E}-05$		

	p_{x}	p_{y}	p_{z}	E
$u(g)$	0	0	250	250
$\bar{u}(g)$	0	0	-250	250
b	24.97040523056789	-18.43157602837212	144.2306511496888	147.5321146846735
\bar{b}	103.2557390255471	-0.5484684659584054	33.97680766420219	108.7035966213640
b	-79.89596300367462	7.485866671764871	-176.6948628845280	194.0630765341365
\bar{b}	-48.33018125244035	11.49417782256567	-1.512595929362970	49.70121215982584

Outlook

OPP

Outlook

OPP

- has changed the computational approach at one loop

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Current

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations the full one-loop amplitudes HELAC-1L CuTtools AVH_OLO (Complex-mass scheme for unstable particles)

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations the full one-loop amplitudes HELAC-1L CuTtools AVH_OLO (Complex-mass scheme for unstable particles)
- Automatize the real contributions HELAC-DIPOLES

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations the full one-loop amplitudes HELAC-1L CuTtools AVH_OLO (Complex-mass scheme for unstable particles)
- Automatize the real contributions HELAC-DIPOLES

Future

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations the full one-loop amplitudes HELAC-1L CuTtools AVH_OLO (Complex-mass scheme for unstable particles)
- Automatize the real contributions HELAC-DIPOLES

Future

Several realistic calculations, $p p \rightarrow t t b b, p p \rightarrow t t+2$ jets, etc.

Outlook

OPP

- has changed the computational approach at one loop
- numerical but still algebraic: speed and precision not a problem

Current

- Automatize through Dyson-Schwinger equations the full one-loop amplitudes HELAC-1L CuTtools AVH_OLO (Complex-mass scheme for unstable particles)
- Automatize the real contributions HELAC-DIPOLES

Future

Several realistic calculations, $p p \rightarrow t t b b, p p \rightarrow t t+2$ jets, etc.
A generic NLO calculator ante portas

Tools 2009?

BlackHat

C.F. Berger, Z. Bern, L.J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D.A. Kosower, D. Maitre, arXiv:0803.4180 [hep-ph]

Rocket

W. T. Giele and G. Zanderighi, arXiv:0805.2152 [hep-ph]

CutTools
G. Ossola, C. G. Papadopoulos and R. Pittau, [arXiv:0711.3596 [hep-ph]].

HELAC-1LOOP

A. van Hameren, C. G. Papadopoulos and R. Pittau [arXiv:0903.4665 [hep-ph]].

Tools 2009?

SHERPA-DIPOLES

Tanju Gleisberg, Frank Krauss, arXiv:0709.2881 [hep-ph]

HELAC-DIPOLES

M. Czakon, C.G. Papadopoulos, M. Worek . arXiv:0905.0883 [hep-ph]

[^0]: ${ }^{1}$ In collaboration with G. Bevilacqua, M. Czakon, P. Draggiotis, M. Grazelli, I. Malamos, P. Mastrolia, G. Ossola, R. Pittau, A. van Hameren, M. Worek

[^1]: G. Ossola, C. G. Papadopoulos and R. Pittau,arXiv:0802.1876 [hep-ph]

