Baryonic B Decays at Belle Introduction B $\rightarrow \Lambda \overline{\Lambda} h$ $B \rightarrow p \wedge \pi^+\pi^-$ Summary Min-Zu Wang (王名儒) National Taiwan University for the Belle Collaboration Abstract 917 EPS2009@Krakow #### Introduction - Profound baryonic decays: a unique feature of B meson - Well established after few years of B-factory running - \blacksquare BF(2-body) < BF(3-body) (< BF(4-body)) - Threshold enhancement in the baryonantibaryon system - Searching ground for exotic states - May have unexpected large CP violation in charmless modes - New results from B $\rightarrow \Lambda \Lambda h$ and p $\Lambda \pi^+\pi^-$ # $B \rightarrow \Lambda \bar{\Lambda} h$ #### 605fb⁻¹ PRD79:052006 (2009) BF(B⁰ \rightarrow ΛΛK⁰)= (4.76 $^{+0.84}_{-0.68}$ ±0.61) x 10⁻⁶ significance : 12.5 σ ■ BF(B⁰→ $\Lambda \overline{\Lambda}$ K^{*0})= (2.46 $^{+0.87}_{-0.72}$ ±0.34) x 10⁻⁶ significance : 9.0 σ | M _{bc} >5.27GeV/c ² | ΔE <0.05GeV | |---|--| | 15 10 10 0.1 0.2 0. ΔE (GeV) | 20 10 20 10 5.2 5.25 5.275 5.2 | | | | | Mode | Significance | | |---|--------------|--| | $B^+\rightarrow \Lambda \Lambda K^{*+}$ | 3.7 σ | | | $B_0 \rightarrow VVD_0$ | 3.4 σ | | | $B^+ \rightarrow \Lambda \Lambda \pi^+$ | 2.5 σ | | # $M_{\Lambda\overline{\Lambda}}$ Distribution The threshold enhancement is still there for the two newly observed modes PRD79:052006 (2009) # Comparison between $p\bar{p}h$ and $\Lambda \bar{\Lambda}h$ | Branching | ranching Fractions (10^{-6}) Branching Fractions (10^{-6}) | | ractions (10^{-6}) | |----------------------------------|--|--|---------------------------------| | $B^0 \rightarrow p\bar{p}K^0$ | $2.51^{+0.35}_{-0.29} \pm 0.21$ | $B^0 \to \Lambda \bar{\Lambda} K^0$ | $4.76^{+0.84}_{-0.68} \pm 0.61$ | | $B^0 o p ar p K^{*0}$ | $1.18^{+0.29}_{-0.25} \pm 0.11$ | $B^0 o \Lambda \bar{\Lambda} K^{*0}$ | $2.46^{+0.87}_{-0.72} \pm 0.34$ | | $B^+ \rightarrow p\bar{p}K^+$ | $5.54^{+0.27}_{-0.25} \pm 0.36$ | $B^+ \to \Lambda \bar{\Lambda} K^+$ | $3.38^{+0.41}_{-0.36} \pm 0.41$ | | $B^+ \rightarrow p\bar{p}K^{*+}$ | $3.38^{+0.73}_{-0.60} \pm 0.39$ | $B^+ \to \Lambda \bar{\Lambda} K^{*+}$ | $2.19^{+1.13}_{-0.88} \pm 0.33$ | | $B^+ o par p\pi^+$ | $1.60^{+0.22}_{-0.19} \pm 0.12$ | $B^+ o \Lambda \bar{\Lambda} \pi^+$ | < 0.94 | PLB659:80 (2008) PRD79:052006 (2009) PRL100:251801 (2008) The branching fractions indicate that there is no one to one correspondence ## Dibaryon angular distribution Fit results in bins of $\cos \theta_{\Lambda}$ with $M_{\Lambda} \stackrel{\sim}{\wedge} < 2$. 85GeV/c² PRD79:052006 (2009) ## Polarization study of K*0 The K*0 meson is found to have a fraction of $(60\pm22\pm8)\%$ in the helicity zero state. PRD79:052006 (2009) Phys. Rev. Lett. 100, 251801 (2008) #### Discussion based on quark diagrams **EPS2009** B to $\Lambda\Lambda K$ mode might behave like B to $p\overline{\Lambda}$ π mode? ### Control sample study for B⁺ \rightarrow p $\Lambda \pi^{+}\pi^{-}$ $$B^+ \longrightarrow p \overline{\Lambda}_c \pi^+$$ $\overline{\Lambda}_c \longrightarrow \overline{\Lambda} \pi^-$ Eff. = 5.1% BF = $(2.4 \pm 0.5 \text{ (stat.)}) \times 10^{-6}$ PDG value = = $(2.25 \pm 0.87) \times 10^{-6}$ $B \rightarrow p \overline{\Lambda}_c \pi ; \Lambda_c \rightarrow \Lambda \pi$ # $B \rightarrow p \overline{\Lambda} \pi \pi$ yield extraction #### 605fb⁻¹ B yield = 348.03 ± 25.37 ### Threshold enhancement # of B/eff. in $M_{p\Lambda}$ spectrum Fit with threshold function #### Intermediate 3-body decay study # B yields in $M_{\Pi\Pi}$ Cross: B yield from the M_{bc} -dE fit Histogram : MC simulation for $\pi\pi$ and resonances ### Summary - More baryonic modes have been found in B meson decays - Comparisons between $p\overline{p}h$ and $\Lambda \overline{\Lambda}h$ show that the underlying dominant decay diagrams may be different - First 4-body charmless baryonic decay has been observed in $B \rightarrow p \overline{\Lambda} \pi \pi$ - Threshold enhancement is the key to understand baryonic B decays