

Baryonic B Decays at Belle

Introduction B $\rightarrow \Lambda \overline{\Lambda} h$

 $B \rightarrow p \wedge \pi^+\pi^-$

Summary

Min-Zu Wang (王名儒) National Taiwan University for the Belle Collaboration

Abstract 917

EPS2009@Krakow

Introduction

- Profound baryonic decays: a unique feature of B meson
- Well established after few years of B-factory running
- \blacksquare BF(2-body) < BF(3-body) (< BF(4-body))
- Threshold enhancement in the baryonantibaryon system
- Searching ground for exotic states
- May have unexpected large CP violation in charmless modes
- New results from B $\rightarrow \Lambda \Lambda h$ and p $\Lambda \pi^+\pi^-$

$B \rightarrow \Lambda \bar{\Lambda} h$

605fb⁻¹

PRD79:052006 (2009)

BF(B⁰ \rightarrow ΛΛK⁰)= (4.76 $^{+0.84}_{-0.68}$ ±0.61) x 10⁻⁶ significance : 12.5 σ

■ BF(B⁰→ $\Lambda \overline{\Lambda}$ K^{*0})= (2.46 $^{+0.87}_{-0.72}$ ±0.34) x 10⁻⁶ significance : 9.0 σ

M _{bc} >5.27GeV/c ²	ΔE <0.05GeV
15 10 10 0.1 0.2 0. ΔE (GeV)	20 10 20 10 5.2 5.25 5.275 5.2

Mode	Significance	
$B^+\rightarrow \Lambda \Lambda K^{*+}$	3.7 σ	
$B_0 \rightarrow VVD_0$	3.4 σ	
$B^+ \rightarrow \Lambda \Lambda \pi^+$	2.5 σ	

$M_{\Lambda\overline{\Lambda}}$ Distribution

The threshold enhancement is still there for the two newly observed modes
PRD79:052006 (2009)

Comparison between $p\bar{p}h$ and $\Lambda \bar{\Lambda}h$

Branching	ranching Fractions (10^{-6}) Branching Fractions (10^{-6})		ractions (10^{-6})
$B^0 \rightarrow p\bar{p}K^0$	$2.51^{+0.35}_{-0.29} \pm 0.21$	$B^0 \to \Lambda \bar{\Lambda} K^0$	$4.76^{+0.84}_{-0.68} \pm 0.61$
$B^0 o p ar p K^{*0}$	$1.18^{+0.29}_{-0.25} \pm 0.11$	$B^0 o \Lambda \bar{\Lambda} K^{*0}$	$2.46^{+0.87}_{-0.72} \pm 0.34$
$B^+ \rightarrow p\bar{p}K^+$	$5.54^{+0.27}_{-0.25} \pm 0.36$	$B^+ \to \Lambda \bar{\Lambda} K^+$	$3.38^{+0.41}_{-0.36} \pm 0.41$
$B^+ \rightarrow p\bar{p}K^{*+}$	$3.38^{+0.73}_{-0.60} \pm 0.39$	$B^+ \to \Lambda \bar{\Lambda} K^{*+}$	$2.19^{+1.13}_{-0.88} \pm 0.33$
$B^+ o par p\pi^+$	$1.60^{+0.22}_{-0.19} \pm 0.12$	$B^+ o \Lambda \bar{\Lambda} \pi^+$	< 0.94

PLB659:80 (2008) PRD79:052006 (2009)

PRL100:251801 (2008)

The branching fractions indicate that there is no one to one correspondence

Dibaryon angular distribution

Fit results in bins of $\cos \theta_{\Lambda}$ with $M_{\Lambda} \stackrel{\sim}{\wedge} < 2$. 85GeV/c²

PRD79:052006 (2009)

Polarization study of K*0

The K*0 meson is found to have a fraction of $(60\pm22\pm8)\%$ in the helicity zero state.

PRD79:052006 (2009)

Phys. Rev. Lett. 100, 251801 (2008)

Discussion based on quark diagrams

EPS2009

B to $\Lambda\Lambda K$ mode might behave like B to $p\overline{\Lambda}$ π mode?

Control sample study for B⁺ \rightarrow p $\Lambda \pi^{+}\pi^{-}$

$$B^+ \longrightarrow p \overline{\Lambda}_c \pi^+$$

 $\overline{\Lambda}_c \longrightarrow \overline{\Lambda} \pi^-$

Eff. = 5.1%

BF = $(2.4 \pm 0.5 \text{ (stat.)}) \times 10^{-6}$

PDG value = = $(2.25 \pm 0.87) \times 10^{-6}$

 $B \rightarrow p \overline{\Lambda}_c \pi ; \Lambda_c \rightarrow \Lambda \pi$

$B \rightarrow p \overline{\Lambda} \pi \pi$ yield extraction

605fb⁻¹

B yield =

 348.03 ± 25.37

Threshold enhancement

of B/eff. in $M_{p\Lambda}$ spectrum Fit with threshold function

Intermediate 3-body decay study

B yields in $M_{\Pi\Pi}$

Cross: B yield from the M_{bc} -dE fit

Histogram : MC simulation for $\pi\pi$ and resonances

Summary

- More baryonic modes have been found in B meson decays
- Comparisons between $p\overline{p}h$ and $\Lambda \overline{\Lambda}h$ show that the underlying dominant decay diagrams may be different
- First 4-body charmless baryonic decay has been observed in $B \rightarrow p \overline{\Lambda} \pi \pi$
- Threshold enhancement is the key to understand baryonic B decays