$b \rightarrow s$ Hadronic Decays at Belle

Sunghyon Kyeong

Yonsei University, Seoul, Korea (on Behalf of the Belle Collaboration)

Europhysics Conference on High Energy Physics Kraków, Poland, 16-22 July, 2009

sunghyon.kyeong@gmail.com

INTRODUCTION

In the Standard Model (SM), Charmless hadronic *B* decays occur mainly via two processes.

(i) $b \rightarrow s$ penguin diagram

(ii) $b \rightarrow u$ tree diagram

Charmless hadronic *B*-decays give us plenty of information.

- * Search for new physics effects by studying loop processes.
- * $b \rightarrow s$ quark transitions are sensitive to physics beyond SM.
- * Direct CP Violation : Interefering SM amplitudes.
- * Measuring BF, angular correlations could help the phenomenological test/development of the theoretical models.

MOTIVATION

- * Measurements of f_L in rare *B* decays to *VV*, such as $B \rightarrow \phi K^*$, have revealed an unexpectedly large fraction of transverse polarisation.
- * This implies that non-factorizable contributions to the decay amplitude play a significant role.
- * Further information about these effects can be obtained with \mathcal{B} and $f_{\rm L}$ in $\mathbf{B}^0 \to \rho^0 \mathbf{K}^{*0}$ (also $b \to s$ penguin-dominated).

BaBar's Results, PRL 97, 201801, (2006) with 232 imes 10⁶ $Bar{B}$

Mode	Y	ε	S	B	fL
	(events)	(%)	(σ)	(10^{-6})	
$\rho^{0}K^{*0}$	185±30	22.9	5.3	$5.6 {\pm} 0.9 {\pm} 1.3$	$0.57{\pm}0.09{\pm}0.08$
$f_0(980)K^{*0}$	83±19	21.7	3.5	$2.6{\pm}0.6{\pm}0.9$	

KEKB AND BELLE DETECTOR

- Ring circumference of KEKB is approximately 3.0 km.
- KEKB has two separate rings for e^+ and e^- .

- * located at energy asymmetric e^+e^- collider KEKB.
- Belle detactor has a large-solid-angle magnetic spectrometer, providing excellent tracking, vertexing and PID.

Approximately 0.8 billion *BB* pairs recorded at Belle!

ANALYSIS METHOD

* Recontruction Variables:

- $\Delta E = E_B - E_{beam}$: Energy difference

- $M_{
 m bc} = \sqrt{E_{
 m beam}^2 P_B^2}$: Beam-energy constrained mass
- Invariant masses of $\pi\pi$ and $K\pi$ (*i.e.* $M_{\pi\pi}$ and $M_{K\pi}$)

* Continuum ($e^+e^- ightarrow qar{q}$) Suppression:

- Modified Fox-Wolfram moments, *B* flight direction $(\cos \theta_{B^*})$, and the decay vertex differences between the signal *B* and that of the other *B* in *z* direction (Δz) .
- Perform Figure of Merit study to get a continuum suppression cut value.

* Veto
$$B \rightarrow D^{*\pm}X, \ D^{\pm}X, \ D^{0}X$$
 modes

YIELD EXTRACTION BY 4-D FIT

4-D Extended Unbinned ML Function:

$$\mathcal{L} = \frac{\exp\left(-\sum_{j} Y_{j}\right)}{N!} \prod_{i=1}^{N_{\text{cand}}} \left(\sum_{j} Y_{j} \mathcal{P}_{j}^{i}\right)$$
(1)

where, $\mathcal{P}_{j}^{i} = \mathcal{P}_{j}(M_{bc}^{i})\mathcal{P}_{j}(\Delta E^{i})\mathcal{P}_{j}(M_{\pi\pi}^{i})\mathcal{P}_{j}(M_{K\pi}^{i})$, for component *j*, and *i* runs over all events in the sample.

For Signal PDFs:

$$\mathcal{P}_{j}^{i} = (1 - f_{\text{SCF}})\mathcal{P}_{\text{true}}^{i} + f_{\text{SCF}}\mathcal{P}_{\text{SCF}}^{i}$$

where, $f_{\rm SCF}$ is the SCF fraction.

(2)

Measurements of $B^0 \rightarrow \rho^0 K^{*0}$ and $B^0 \rightarrow \pi^+ \pi^- K^+ \pi^-$

using a sample of 657 million BB pairs

SIGNAL MC DISTRIBUTIONS

Sunghyon Kyeong (Yonsei Univ.)

 $b \rightarrow s$ Hadronic Decay at Belle

BKG. MC DISTRIBUTIONS

* Charmless *B*-decays ($b \rightarrow s, u, d$), $B^0 \rightarrow f_2(1270)K^{*0}$, and feeddowns $B^0 \rightarrow a_1^-(1260)K^+$, $B^0 \rightarrow K_1^+(1270)\pi^-$ and $B^0 \rightarrow K_1^+(1400)\pi^-$ are also considered.

4D FITTING PROJECTION

Projection of the 4D fit results on to (a) M_{bc} , (b) ΔE , (c) $M_{\pi\pi}$ and (d) $M_{K\pi}$ with the other variables required to be the signal criteria (except for the variable plotted).

The curves are for the $\rho^0 K^+ \pi^-$ (solid-shaded), the sum of $\rho^0 K^{*0}$ and $f_0(980)K^{*0}$ (dashed), the sum of backgrounds (dotted), and the total (solid).

FITTING RESULTS

Mode	Y	ε	${\mathcal S}$	B	$\mathcal{B}_{\mathrm{UL}}$
	(events)	(%)	(σ)	(10 ⁻⁶)	(10 ⁻⁶)
$ ho^0 K^{*0}$	$77.6^{+28.6}_{-27.9}$	5.73	2.7	$2.1\substack{+0.8+0.9\\-0.7-0.5}$	< 3.4
$f_0(980)K^{*0}$	$51.2^{+20.4}_{-19.3}$	5.56	2.5	$1.4\substack{+0.6+0.6\\-0.5-0.4}$	< 2.2
$ ho^{0}K^{+}\pi^{-}$	$207.8^{+39.8}_{-39.2}$	11.15	5.0	$2.8\pm0.5\pm0.5$	-
$f_0(980)K^+\pi^-$	$106.9^{+31.6}_{-29.9}$	11.43	3.5	$1.4\pm0.4^{+0.3}_{-0.4}$	< 2.1
$\pi^+\pi^-K^{*0}$	$200.7^{+46.7}_{-44.9}$	6.74	4.5	$4.5^{+1.1+0.9}_{-1.0-1.6}$	-
$\pi^+\pi^-K^+\pi^-$	$-5.4\substack{+54.9\\-44.9}$	6.84	0.0	$-0.1\substack{+1.2+1.4\\-1.1-0.8}$	< 2.1

 \ast $\mathcal B$ and $\mathcal B_{UL}$ of the non-resonant decay are **partial one** for the ranges:

 $M_{\pi\pi} \in (0.55, 1.20) \text{ GeV}/c^2$ and $M_{K\pi} \in (0.75, 1.20) \text{ GeV}/c^2$

ADDITIVE SYST. ERRROR

Source	$ ho K^*$	<i>f</i> ₀ <i>K</i> *	$ ho K \pi$	$f_0 K \pi$	$\pi\pi K^*$	$\pi\pi K\pi$
Fitting PDFs	$^{+4.4}_{-5.4}$	+12.7 -11.8	+5.8 -9.1	+24.1 -23.6	+18.1 -17.4	+29.4 -27.9
$f_{f_2(1270)K^{*0}}$	$^{+11.0}_{-11.3}$	$\substack{+5.9\\-6.4}$	$^{+0.3}_{-0.3}$	$^{+0.3}_{-0.1}$	+13.9 -13.7	$^{+30.0}_{-35.4}$
$f_{\rm feed-down}$	$^{+0.6}_{-1.4}$	$^{+0.1}_{-0.1}$	+4.7 -1.5	$^{+0.3}_{-0.4}$	$^{+8.7}_{-3.8}$	+3.2 -1.9
$f_{b \to s, u, d}$	+1.9 -2.1	$^{+0.1}_{-0.0}$	$^{+7.0}_{-9.8}$	$^{+0.3}_{-0.4}$	$^{+0.0}_{-1.2}$	$\substack{+3.7\\-0.8}$
<i>f</i> _{SCF}	+2.1 -2.1	+1.2 -1.2	+19.9 -20.6	$^{+7.4}_{-7.3}$	+8.2 -8.3	+11.8 -11.4
$K_0^*(1430)^0$	$^{+29.0}_{-0.0}$	$^{+14.7}_{-0.0}$	+16.9 -12.4	+0.0 -19.3	$^{+0.0}_{-54.8}$	$^{+69.1}_{-0.0}$
Fitting bias	$^{+2.7}_{-0.0}$	$^{+4.9}_{-0.0}$	$^{+11.2}_{-0.0}$	$^{+0.0}_{-10.2}$	$^{+0.0}_{-26.6}$	+0.0 -29.9
Interference	$\substack{+6.6\\-5.6}$	$^{+2.3}_{-0.9}$	+14.7 -17.3	$^{+4.3}_{-0.0}$	$\substack{+3.8\\-3.6}$	-
Sum (events)	+31.5 -12.2	+20.5 -12.3	$+34.8 \\ -31.3$	$+25.6 \\ -32.9$	$+35.5 \\ -69.8$	+76.2 -42.6

Sunghyon Kyeong (Yonsei Univ.)

MULTIPLICATIVE SYST. ERROR

Source	$ ho K^*$	f_0K^*	$ ho \mathbf{K} \pi$	$f_0 K \pi$	$\pi\pi K^*$	$\pi\pi K\pi$
MC statistics	± 0.5	±0.7	±1.3	±1.7	±1.3	±2.1
Tracking	±4.2	±4.2	±4.2	±4.2	±4.2	±4.2
PID	±3.7	±3.7	±3.7	±3.8	±3.8	±3.7
$\mathcal{R}_{qar{q}}$ cut	±3.4	±3.4	±3.4	±3.4	±3.4	±3.4
N _{BĒ}	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4	± 1.4
f _L	+16.7 -18.9	-	-	-	-	-
Sum (%)	+18.0 -20.1	±6.7	±6.8	±7.0	±6.9	±7.0

SUMMARY

- * The first observation of the three-body decay $B^0 \rightarrow \rho^0 K^+ \pi^-$ decay with 5.0 σ significance.
- * The first evidences for non-resonant $B^0 \to f_0(980)K^+\pi^$ and $B^0 \to \pi^+\pi^-K^{*0}$ decays.
- * 90% C.L. upper limit for the fully non-resonant four-body decay $B^0 \rightarrow \pi^+ \pi^- K^+ \pi^-$ is calculated.
- * \mathcal{B} and \mathcal{B}_{UL} of non-resonant decay are partial one for the ranges : $0.55 < M_{\pi\pi} < 1.20$ and $0.75 < M_{K\pi} < 1.20$.
- * Signal excesses for the two-body decays $B^0 \rightarrow f_0(980)K^{*0}$ and $B^0 \rightarrow \rho^0 K^{*0}$.
- * More data set could help our understanding of the polarization puzzle in the ρK^* and new physics effect on $B \rightarrow VV$ decays.

BACKUP SLIDES

CONTROL SAMPLE STUDY

We study the $B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$ as our control sample. We perform 2D (M_{bc} and ΔE) unbinned ML fit. We assume our control sample can be categorized into three components: $B^0 \rightarrow D^-(K\pi\pi)\pi^+$ signal, peaking background, and other non-resonant background.

* \mathcal{B} of our control sample is consistent with the PDG value.

FITTING BIAS

* Fitting biases are considered as the systematics uncertainty.

Sunghyon Kyeong (Yonsei Univ.)

 $b \rightarrow s$ Hadronic Decay at Belle

TOY MC STUDY (I)

* The definition of pull for contribution *j* is defined as

$$\operatorname{pull}(Y_j) = \frac{Y_j^{\operatorname{fit}} - Y_j^{\operatorname{true}}}{\sigma_j^{\operatorname{fit}}}$$

TOY MC STUDY (II)

BKG.-SUBTRACTED FIT

Figures show the yields obtained from the 2D M_{bc} – ΔE fitting results as function of $M_{\pi\pi}$ (left) and $M_{K\pi}$ (right). Solid curves show the results of the fit and dashed lines indicates the non-resonant $\pi\pi$ (left) and the non-resonant $K\pi$ plus $K_0^*(1430)$ (right). The regions between the reddish straight lines show the nominal four-dimensional fit regions.