

1

[919] $b \rightarrow d$ and other charmless B decays at Belle

Cheng-Chin Chiang National Taiwan University, Taiwan

18 July 2009 Kraków, Poland The 2009 Europhysics Conference on High Energy Physics

National Taiwan University

Outline

• The KEKB and Belle Detector

•
$$B^- \rightarrow K^{*0}K^-$$
 Decay

(Preliminary result)

- $B^0 \to K^{*0}\overline{K}^{*0}$ and $B^0 \to K^{*0}K^{*0}$ Decays (Preliminary results)
- Summary

KEKB e⁺e⁻ Collider

$b \rightarrow d$ FCNC process: $B^- \rightarrow K^{*0}K^-$ decay

- $b \rightarrow dg$ process: One-loop penguin \rightarrow Sensitive to new physics

- Analogous to $b \rightarrow s$ penguin but more suppressed $\Gamma(b \rightarrow d)/\Gamma(b \rightarrow s) \sim |V_{td}|^2/|V_{ts}|^2 \sim 4\%$
- Currently, only a few $b \rightarrow dg$ modes are observed

 $B^0 \rightarrow K^0 K^0$ BaBar [PRL 97, 171805 (2006)], Belle [PRL 98, 181804 (2007)] $B^0 \rightarrow K^{*0} \overline{K^{*0}}$ BaBar [PRL 100, 081801 (2008)]

- Current status of the of $B^- \rightarrow K^*(892)^{\circ}K^-$ measurements : UL only

- Exp. CLEO BF <5.3 x10⁻⁶ [PRL 85, 2881 (2000)] Exp. BaBar BF = [0.6±0.3±0.2(<1.1)] x10⁻⁶ (1.6σ) [PRD 76, 071103 (2007)]
- Theoretical predictions

~0.5 x10⁻⁶ Flavour SU(3) +exp. [PRD 71, 051501 (2005); PRD 69, 034001 (2004)]

~0.3 x10⁻⁶ Perturbative QCD factorization [PRD 75, 014019 (2007)]

Evidence of $B^- \rightarrow K^*(892)^0 K^-$

B⁻→K^{*}_{0/2}(1430)⁰K⁻ Yield : 23.35 ± 12.13 BF : [0.63±0.33±0.12(<1.10)] x10⁻⁶ (1.5σ)

- The longitudinal polarization fraction f_L of $K^{*0}\overline{K^{*0}}$ can verify a theoretical explanation for $B^0 \rightarrow \phi K^{*0}$ puzzle ($f_L \sim 0.5$). [Phys. Lett. B 622, 63 (2005)]
- A method for clean determination of the CKM phase angles $\phi_2(\alpha)$ and $\phi_3(\gamma)$ using only direct CP violation of decays $B_{u,d,s} \rightarrow VV$, such as $B_{d,s} \rightarrow K^{*0}\overline{K}^{*0}$. [PRD 65, 073018 (2002); PRD 76, 074005 (2007)]
- The current status:
 - BaBar: $BF = (1.28^{+0.35}_{-0.30} \pm 0.11) \times 10^{-6}$ (6 σ), $f_L = 0.80^{+0.10}_{-0.12} \pm 0.06$ [PRL 100, 081801 (2008)]
 - Theoretical predictions: $BF = (0.17 \sim 0.92) \times 10^{-6}$, $f_L = 0.04 \sim 1.0$ [PRD 72, 094026 (2005); Nucl. Phys. B774, 64 (2007); PRD 78, 094001 (2008)]

$$B^0 \rightarrow K^{*0}\overline{K}^{*0}$$
 Decay

Analysis method:

- Reconstruct B^0 with four charged tracks (2 Kaons, 2 pions) : $B^0 \rightarrow K^{*0}\overline{K}^{*0} \rightarrow (K^+\pi^-)(K^-\pi^+)$
- Reconstructed variables :

 $B^0 \rightarrow K^+ \pi^- K^- \pi^+$

- Beam-energy constrained mass: $M_{bc} = \sqrt{E_{beam}^2 - P_B^2}$

- Energy difference :
$$\Delta E = E_B - E_{bea}$$

- Two $K\pi$ invariant masses : $M_{K\pi} = \sqrt{E_{K\pi}^2 - P_{K\pi}^2}$

$$B^0 \to K^{*0}\overline{K}^{*0} \to K^+\pi^-K^-\pi^+$$

$$B^0 \to K^{*0} K^- \pi^+ \to K^+ \pi^- K^- \pi^+$$

$$B^{0} \to K_{0}^{*}(1430)\overline{K}_{0}^{*}(1430) \to K^{+}\pi^{-}K^{-}\pi^{+}$$

$$B \to K_0(1430) K \to K \pi K \pi$$
$$B^0 \to K_0^*(1430) K^- \pi^+ \to K^+ \pi^- K^- \pi^+$$

We can distinguish and
measure these decays
from
$$M_{K+\pi}$$
 vs. $M_{K-\pi+}$
distributions.

For *B* decays

$M_{1(K\pi)}$ vs. $M_{2(K\pi)}$ distributions for different *B* decays

 $B^0 \rightarrow K^{*0}\overline{K}^{*0}$ Decay

11

 $B^0 \rightarrow K^{*0} \overline{K}^{*0}$ Decay

Final state: $(K+\pi-)(K-\pi+)$

Preliminary

Mode	Yield	Eff.(%)	Σ	BF (x10 ⁻⁶)	UL (x10 ⁻⁶)
W*0 W*0	$7.7^{+9.7+2.8}_{-8.4-2.0}$	4.43	0.9	$0.3 \pm 0.3 \pm 0.1$	< 0.8
N°N°		(<i>f</i> _=1)		$0.3 \pm 0.3 \pm 0.1$	(<i>f</i> _L =1)
K⁵⁰Kπ	$18.2^{+48.4}_{-45.3}_{-40.7}^{+48.4}_{-45.3}_{-40.7}$	1.31*	0.3	$2.1^{+5.6+4.8}_{-5.3-4.7}$	< 13.9
K ₀ *(1430)K ₀ *(1430)	$78.5^{+70.6+56.1}_{-69.6-56.6}$	3.72*	0.8	$3.2^{+2.9}_{-2.8} \pm 2.3$	< 8.4
K ₀ *(1430) K *0	$19.6^{+31.1+40.0}_{-31.0-42.9}$	4.38*	0.4	$0.7 \pm 1.1^{+1.4}_{-1.5}$	< 3.3
K ₀ [*] (1430)Kπ	$-222.8^{+171.5+159.5}_{-170.8-168.6}$	1.34*			< 31.8
Non-resonant K+K-π+π-	$158.4^{+120.6+103.9}_{-117.8-104.9}$	0.82*	1.0	$29.4^{\scriptscriptstyle +22.4\scriptscriptstyle +19.3}_{\scriptscriptstyle -21.9-19.5}$	< 71.1
Non-resonant Κ+π-π+π- & Κ-π+π+π-	$150.1^{+44.1+14.6}_{-42.9-15.7}$	0.06*	3.5	380.8 ^{+111.9+37.0} -108.8-39.9	
* Partial Efficiency	Assume: K ^{*0} -	$\rightarrow K^+\pi^-(66)$	5.51%)		

Assume: $K^{*0} \to K^{+}\pi^{-}(66.51\%)$

 $K_0^*(1430) \rightarrow K^+\pi^-(66.67\%)$

$B^0 \rightarrow K^{*0} K^{*0}$ Decay

657M BB sample

Preliminary

- This mode has a different charge final state: (K+π-)(K+π-).
- The standard model forbidden decay B⁰→K^{*0}K^{*0} is not expected to be found unless there is a new process that we do not find yet.

 $B^0 \rightarrow K^{*0} K^{*0}$ Decay

Final state: (*K*+*π*-)(*K*+*π*-)

* Partial Efficiency

Preliminary

Mode	Yield	Eff.(%)	Σ	BF (x10 ⁻⁶)	UL (x10 ⁻⁶)
K*0K*0	$-3.7 \pm 3.3^{+2.4}_{-2.7}$	5.74 (f _L =1)			< 0.2 (f _L =1)
K ^{∗0} Kπ	$0.4 \pm 32.3^{+43.4}_{-40.0}$	1.93*	0.0	$0.0 \pm 2.5^{+3.4}_{-3.2}$	< 7.6
K ₀ *(1430)K ₀ *(1430)	$-28.4 \pm 16.1_{-21.1}^{+87.6}$	4.28*			< 4.7
K ₀ *(1430)K* ⁰	$8.0 \pm 18.7^{+23.9}_{-30.3}$	5.14*	0.3	$0.2 \pm 0.6^{+0.7}_{-0.9}$	< 1.7
Non-resonant K+K+π-π-	$10.8 \pm 28.3_{-101.4}^{+31.4}$	1.98*	0.3	$0.8 \pm 2.2^{+2.4}_{-7.8}$	< 6.0
Non-resonant K+π-π+π-	$24.1 \pm 29.1^{+8.2}_{-5.2}$	0.03*	0.8	$61.2 \pm 73.8^{+20.7}_{-13.3}$	< 177.6

Assume: $K^{*0} \rightarrow K^{+}\pi^{-}(66.51\%)$

 $K_0^*(1430) \rightarrow K^+ \pi^-(66.67\%)$

13

Control samples with same final states

Mode	Eff. (%)	Estimated no. (657M BB Data)	Fit no. (∆E-M _{bc} Fit) (657M BB Data)	Difference (%)	
$B^0 \to D^{\pm} \pi^{\mp}$	19.0	3214.9 ± 155.9	3401.6 ± 68.4	+5.8 ± 5.8	
$B^0 \rightarrow \overline{\overline{D}}{}^0 K^{*0}$	11.4	40.8 ± 5.8	43.1 ± 9.3	+5.6 ± 27.8	

14

Summary

 $B^{-} \rightarrow K^{*}(892)^{0}K^{-}$:

• We find evidence (4.4σ) of this mode with the branching fraction $(0.68 \pm 0.16 \pm 0.10) \times 10^{-6}$.

 $B^0 \rightarrow K^{*0} \overline{K}^{*0}$:

- We measure the branching fraction of $B^0 \rightarrow K^{*0}\overline{K^{*0}}$ to be $(0.3 \pm 0.3 \pm 0.1)$ x10⁻⁶ with 0.9 σ significance, assuming $f_L = 1$, the 90% confidence level upper limit is <0.8 x 10⁻⁶, which is within the theoretical prediction.
- The branching fraction from BaBar measurement is $(1.28^{+0.35}_{-0.30} \pm 0.11) \times 10^{-6}$, the difference of the mean branching fraction between BaBar and Belle is about 1.4 σ .
- For possible feeddown decays, such as non-resonant $B^0 \rightarrow KK\pi\pi$ and $B^0 \rightarrow K_0^*(1430)X$, their yields from the simultaneous fit are not significant, so we set the corresponding upper limits.

Backup

2-D (M_{bc}- Δ E) fit in $B^0 \rightarrow K^{*0}\overline{K^{*0}}$ Signal Region

Mode	Yield	Eff. (%)	BF (x 10 ⁻⁶)
K*0K*0	8.7 ± 6.3	2.78 (f _L = 1.0)	0.5 ± 0.3

$e^+e^- \rightarrow q\overline{q} (q=u,d,s,c)$ Background Suppression

The dominant background in *B* analysis is e⁺e⁻ → qq (q=u,d,s,c), we called "continuum" (~ 3x BB).

• To suppress continuum background, we use <u>event shape variables</u> and <u>flavor tagging information</u>.

Fit Bias Study (for 4-D Fit)

- The correlations between (ΔE , M_{bc}) and (M_1 , M_2) would cause fit bias, we study this effect by MC with full detector simulation.
- We very the input number of signal events in MC ensemble data, and then check the output number of signal events from 4-D fit (Fig. 1).
- To correct this fit bias we substitute the fit bias correction equations into 4-D fit likelihood function (Fig. 2).
- The MC ensemble fit can be also used to check the correctness of statistical error of the signal yields. We define PULL = (fit no. Input no. of MC) / (Stat. error from the fit), and check its distribution from MC ensemble fit (Fig. 3).

Systematic Uncertainties ($B^0 \rightarrow K^{*0}\overline{K}^{*0}$ analysis)

Mode Source	K ^{*0} (892) K ^{*0} (892)	K ^{*0} (892) Kπ	K _o *(1430) K _o *(1430)	K₀ [*] (1430) K ^{*0} (892)b	K ₀ *(1430) Kπ	Non- Resonant K+K-π+π-	Non- Resonant K+π-π+π- & K-π+π+π-
Fitting PDF	± 0.234	± 2.22	± 0.708	± 1.92	± 0.709	± 0.646	± 0.028
$N[B^{0} \rightarrow K_{2}^{*}(1430)X]$	+ 0.148	+ 0.56	- 0.09	- 1.04	- 0.237	- 0.066	- 0.037
N(Rare B)	± 0.004	± 0.003	± 0.002	± 0.004	± 0.003	± 0.006	± 0.01
f _L	- 0.007						
f _{SCF}	± 0.097	± 0.076	± 0.071	± 0.113	± 0.077	± 0.092	± 0.067
Fit Bias	+ 0.201	- 0.299	+ 0.027	+ 0.678	- 0.066	- 0.068	- 0.013
Tracking	± 0.051	± 0.045	± 0.044	± 0.045	± 0.043	± 0.043	± 0.044
PID	± 0.05	± 0.037	± 0.037	± 0.037	± 0.037	± 0.038	± 0.039
LR cut	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02
N(BBar)	± 0.014	± 0.014	± 0.014	± 0.014	± 0.014	± 0.014	± 0.014
Sum (fraction)	+0.364 -0.264	+2.29 -2.24	+0.715 -0.72	+2.04 -2.19	+0.716 -0.757	+0.656 -0.662	+0.097 -0.105

Systematic Uncertainties ($B^0 \rightarrow K^{*0}K^{*0}$ analysis)

Mode	K ^{*0} (892) K ^{*0} (892)	K ^{*0} (892) Kπ	K _o *(1430) K _o *(1430)	K ₀ *(1430) K ^{*0} (892)	Non- Resonant K+K-π+π-	Non- Resonant K+π-π+π-
Fitting PDF	± 0.646	± 89.7	± 0.073	± 2.82	± 2.83	± 0.187
$N[B^0 \rightarrow K_2^*(1430)X]$	0.004			0.54	0.00	0.04
$N[B^0 \to K_0^*(1430)K\pi]$	- 0.091	+ 37.8	+ 3.0	- 2.54	- 8.99	- 0.04
N(Rare B)	± 0.0	± 0.909	± 0.004	± 0.041	± 0.03	± 0.064
f _L	-0.182					
f _{SCF}	± 0.039	± 0.544	± 0.028	± 0.06	± 0.023	± 0.05
Fit Bias	- 0.273	- 5.53	- 0.12	+ 1.03	+ 0.713	+ 0.262
Tracking	± 0.05	± 0.045	± 0.044	± 0.045	± 0.043	± 0.043
PID	± 0.045	± 0.038	± 0.036	± 0.036	± 0.036	± 0.04
LR cut	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02
N(BBar)	± 0.014	± 0.014	± 0.014	± 0.014	± 0.014	± 0.014
Sum (fraction)	+0.651 -0.735	+97.3 -89.9	+3.09 -0.74	+3.0 -3.8	+2.92 -9.43	+0.338 -0.217

Make Projections in Three $M_{1(K\pi)}$ vs. $M_{2(K\pi)}$ Areas

Make Projections in Three $M_{1(K\pi)}$ vs. $M_{2(K\pi)}$ Areas

