

Optical Link ASICs for LHC Upgrades

K.K. Gan, H.P. Kagan, R.D. Kass, J. Moore, S. Smith The Ohio State University

July 18, 2009

- Introduction
- VCSEL driver chip
- PIN receiver/decoder chip
- Clock multiplier
- Summary

- 1st phase of LHC upgrade is planned for 2014:
 - ♦ 3 times increase in luminosity to 3x10³⁴ cm⁻²s⁻¹
 - expect significant degradation in the ATLAS pixel detector
 - ⇒ add an insertable barrel layer (IBL) at radius of 3.5 cm
- Possible upgrade for on-detector optical readout system for the IBL:
 - add new functionalities to correct for deficiencies in current system
 - upgrade current optical chips to run at higher speed
 - some of the development could be of interest to SLHC upgrade
 - use 130 nm CMOS 8RF process
 - prototype chips received/irradiated in July/August 2008
 - ➡ results will be presented below

Opto-Ch

640 Mb/s VCSEL driver_

3.2 Gb/s VCSEL driver

640 MHz clock multipliers (4 x 160 and 16 x 40 MHz)

PIN receiver/decoder (40, 160, 320 Mb/s)

2.6 mm x 1.5 mm

K.K. Gan

Testing the 130 nm

Chips were tested in the lab at Ohio State University

- chips were irradiated with 24 GeV protons to SLHC dose at CERN
 - 8 VCSEL drivers: 4 "slow" + 4 "fast"
 - 4 PIN receivers/decoders (purely electrical testing)
 - 4 PIN receivers/decoders coupled to PIN
 - 4 clock multipliers
 - long cables limited testing of drivers/receivers to 40 Mb/s
 - special designed card allows testing of clock multiplier at 640 MHz

- both slow/fast chips are working
- LVDS receiver/VCSEL driver work at high speed
 BER < 10⁻¹³ @ 4 Gb/s using 10 Gb/s AOC VCSE
 - ◆ BER < 10⁻¹³ @ 4 Gb/s using 10 Gb/s AOC VCSEL

K.K. Gan

- VDC driving 2.5 Gb/s Optowell VCSEL
- Possible to obtain similar eye diagram by adjusting control currents
 - radiation induced changes in control current circuitry

• Have access to two transistors for characterization

- simulation with 300 mV threshold shift reproduces observed V vs. I
- PMOS and NMOS have different threshold voltage shifts
- ⇒ will use only PMOS in the current mirror

K.K. Gan

Receiver/Deco

Designed to operate at 40, 160, and 320 Mb/s

- achieve only 250 Mb/s due to lack of time for design optimization before submission
- no significant degradation up to SLHC dose

K.K. Gan

Low Voltage Differ

- output has fast rise and fall times
- output has proper amplitude and baseline
 - ◆ small clock jitter, e.g. < 50 ps (1%) @ 160 MHz
 - no significant degradation up to SLHC dose

Single Event

Single event upset (SEU) measured with receiver/decoder coupled to a Taiwan PIN for 40 Mb/s operation

- SEU rate much higher for chip coupled to PIN as expected
- no significant degradation with radiation observed

Clock Mult

- clock multiplier needed to serialize high speed data
- both 4 x 160 MHz and 16 x 40 MHz clock multipliers work
 - use of recovered clock as input does not increase jitter

Clock Mult

- SEU in PIN coupled to data/clock decoder disturbed the input clock
 - ➡ observation confirmed with simulation
 - output clock takes ~ 3 μ s to recover
 - two of the four chips lost lock during irradiation
 - □ need power cycling to resume operation at 640 MHz
 - no change in current consumption (Treq V("/outp"?result "tran-tran") "rising" ?xName "time" ?mode "auto" ?threshold 0.15 ?histo...

- first 130 nm submission mostly successful
- no significant degradation up to 73 Mrad
 - observe threshold shift in thick oxide transistors
- aim for next iteration in autumn 2009 with new functionalities
 individual control of VCSEL currents
 - redundancy: ability to bypass a bad VCSEL/PIN channel