Dark Matter Detection and Collider Signal in an SO(10) Model with Two-step Intermediate Scale Symmetry Breaking

Eun-Kyung Park
Bonn University

 $in\ progress$ with M. Drees and J. Kim (Bonn Univ.)

EPS HEP 2009, Krakow, Poland, July 18, 2009

Outline

- Introduction
 - * Motivations
 - * 2-step intermediate scale symmetry breaking
- ullet $\operatorname{The} \operatorname{Model}$ [Drees and Kim, JHEP, 0812 (2008) 095]
 - ★ Set-up
 - * Results
 - Gauge couplings
 - Mass ratios
- Direct and indirect dark matter detection
- Collider signals at LHC
- Conclusions

Introduction

Motivations

- * SUSY SO(10) GUTs are most elegant theories of particle physics
 - Hierarchy problem, Guage coupling unification, Dark matter candidate, ...
 - Room for massive RH- ν via seesaw mechanism
 - Pati-Salam model: parity preserved at high energy and broken spontaneously
- \star Intermediate symmetry breaking scale
 - Breaking of SO(10) depends on Higgs field rep. introduced in the theory
 - Consider "intermediate" phases at energy scales well below Q_{GUT}
 - $-m_{\nu} \geq \sqrt{\delta m_{atm}^2} \sim 0.04 eV, \text{RH-}\nu_N(M_N) \leq 10^{14} GeV$
 - $-M_N$ breaks $SU(2)_R \to \text{motivation for L-R symmetric subgroup of SO(10)}$ to be broken at this scale, (M_R)
- Two-step intermediate symmetry breaking
 - $\star SO(10)$ $\xrightarrow{54} SU(4)_C \times SU(2)_L \times SU(2)_R \times D \xrightarrow{45} SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \xrightarrow{126+\overline{126}} G_{SM}$
 - * Assume universal BC for SSB terms at $M_{GUT} = M_X$
 - * Introduce two-intermediate scales (+ additional matter, gaugino and higgs SFs)
 - $RH-\nu \rightarrow M_N$ at scale $M_R \longrightarrow Y_N$ changes low energy spect. via RGEs
 - Different phenomenology from that of mSUGRA (cMSSM)

Set-Up

• Higgs superfields in different representations:

$$S: 54, A: 45, \Sigma: 126, \bar{\Sigma}: \overline{126}$$

• Superpotential:

$$W = \frac{m_S}{2} Tr S^2 + \frac{\lambda_S}{3} Tr S^3 + \frac{m_A}{2} Tr A^2 + \lambda Tr A^2 S + m_{\Sigma} \Sigma \bar{\Sigma} + \eta_S \Sigma^2 S + \bar{\eta}_S \bar{\Sigma}^2 S + \eta_A \Sigma \bar{\Sigma} A$$

• Symmetry breaking:

$$SO(10) \xrightarrow{54} SU(4)_C \times SU(2)_L \times SU(2)_R \times D \xrightarrow{45}_{M_C}$$

$$SU(3)_C \times U(1)_{B-L} \times SU(2)_L \times SU(2)_R \xrightarrow{126+\overline{126}}_{M_R} G_{SM}$$

- After symmetry breaking, some components of Higgs fields have much lighter masses than the symmetry breaking scales \rightarrow two additional Higgs mass scales, $M_1 \equiv max[\frac{M_R^2}{M_C}, \frac{M_C^2}{M_X}], M_2 \equiv \frac{M_R^2}{M_X} \Rightarrow$ different structures of Yukawa couplings in different mass scale ranges. [C.S Aulakh et. al. Nuc. Phys. B597 (2001) 89]
- $\bullet \ m_{\nu} = \frac{m_D^2}{M_N} \propto Y_N^{-1}$
- Additional fields lighter than $M_R (\to M_2)$ allows us to have modified running guage couplings in the energy range between G_{SM} and $Q_{GUT} \Rightarrow$ affect RGE's of masses of sparticles and Higgs.

Gauge coupling

- mSUGRA at $log(M_X/GeV) = 16.6$
- Biggest difference from mSUGRA at $log(M_X/GeV) = 15.5$, $log(M_C/GeV) = 14.72$, $log(M_R/GeV) = 13.75$
- Want to see how 2-step intermediate symmetry breaking scales affect to low energy phenomenology

Mass ratio

Mass ratio - Summary

- At low $m_{\nu}(\text{high }Y_N)$
 - * low sfermion mass
 - * positively high Higgs mass
- At high $m_{\nu}(\text{low }Y_N)$
 - ★ low Higgs mass (negative)
- Implications for dark matter in parameter space
 - \longrightarrow stau co-annihilation with low $m_{\nu}(0.2eV)$
 - \longrightarrow A-funnel region with high $m_{\nu}(0.4eV)$ for high $M_{1/2}$
 - \longrightarrow FP-like region with low μ

WMAP allowed regions in $m_0 - M_{1/2}$ space

Grey: Theoretically excl., Red: LEP2 excl. by chargino and Higgs masses, Pink: $b \to s \gamma$ excl.,

Blue: $g_{\mu}-2$ allowed, Green: WMAP allowed

Neutralino DM detection in $m_0 - M_{1/2}$ space

Direct and indirect dark matter detection rates

Benchmark Points 1

- Benchmark points:
 - * allowed by EW precision experiments
 - * deviation from CMSSM is distinct: $M_X = 10^{15.5} GeV, m_{\nu} = 0.2 eV$ \longrightarrow FP-like region(SO(10)1), $\tilde{\tau}$ -coannihilation region(SO(10)2)
- SO(10)1
 - \star significantly heavier gluinos and squarks than neutralinos and charginos, but low $|\mu|$
 - $\rightarrow \tilde{\chi_2^0} \tilde{\chi_1^{\pm}}$ dominant SUSY production mode
- SO(10)2
 - \star gluinos and quarks are relatively lighter $\to \tilde{g}\tilde{q}$ dominant

Benchmark Points 2

parameter	CMSSM 1	SO(10) 1	CMSSM 2	SO(10) 2
$M_{1/2}$	600	1100	550	1000
m_0	1400	1400	300	300
A_0	900	0	0	0
$ an\!eta$	53	40	40	40
χ_1^0	251	243	227	229
χ_2^0	459	313	430	430
χ_3^0	563	317	671	613
χ_4^0	591	519	680	627
χ_1^{\pm}	461	298	433	434
χ_2^{\pm}	588	517	676	623
\tilde{g}	1424	1423	1258	1246
$u_L(d_L)$	1861(1867)	1865(1870)	1182(1189)	1172(1179)
$u_R(d_R)$	1835(1830)	1842(1843)	1145(1139)	1145(1143)
$t_{1}(t_{2})$	1324(1458)	1205(1409)	900(1063)	876(1034)
$b_1(b_2)$	1464(1526)	1418(1529)	1026(1083)	1000(1058)
$e_L(e_R)$	1461(1421)	1490(1466)	485(370)	555(485)
$ au_1(au_2)$	907(1239)	900(1230)	263(476)	246(495)
h^0	115	116	115	115
Ωh^2	0.08	0.09	0.7	0.2

Collider signals at LHC

- Dilepton signals
- $E_T^{miss} > 200 GeV$, $S_T > 0.2$, at least 4jets with $p_T > 150 GeV$ (at least 1jet $p_T > 300 GeV$
- mSUGRA: sharp peak at $m(l^+l^-) \sim M_Z$ from $\tilde{\chi}_2^0 \longrightarrow \tilde{\chi}_1^0 Z^0$ decays
- SO(10)1: peak from $\tilde{\chi}_{2,3}^0 \tilde{\chi}_1^0$ decays + continuum distribution
- SO(10)2: sharp peak at $m(l^+l^-) \sim M_Z$ due to larger decay branching ratio of gluino to stops and sbottoms. $\tilde{\chi}^0_{3,4} \longrightarrow \tilde{\chi}^0_{1,2} Z^0$

Dilepton signals at LHC

SO(10) Model with Two-step Intermediate Scale Symmetry Breaking

Conclusions

- Discrepancy between seesaw scale and GUT scale can be explained with the enhanced symmetry breaking
- Neutralino dark matter remains viable, for different regions of parameter space with mSUGRA
- Effects of implying two-step intermediate scales are
 - * Smaller gaugino masses due to the enhanced gauge symmetries and the large dimensional Higgs used to break them: FP-like region for large $M_{1/2}$
 - * Lighter sfermions due to Dirac and Majorana Yukawa coupling : Coannihilation region for the small neutrino mass
- From benchmark point study, we find distinguishable dilepton mass edges at LHC: peaks from dominant SUSY production mode $\tilde{\chi}_{2,3}^0 \tilde{\chi}_1^0$ or from gluino cascade decay to $\tilde{\chi}_{1,2}^0 Z^0$

Feynman Diagrams Contributing to Neutralino DM Detection

• Direct Detection

• Indirect Detection

Mass spectrum

State	Mass
all of S	
all of A , except $(15, 1, 1)_A$	$\sim M_X$
all of Σ and Σ , except $SU(4)_C$ (anti-)decuplets	
$(10, 3, 1)_{\Sigma}$ and $(10, 3, 1)_{\Sigma}$	
color triplets and sextets of $(10, 1, 3)_{\Sigma}$ and $(\overline{10}, 1, 3)_{\Sigma}$	$\sim M_C$
color triplets of $(15, 1, 1)_A$	
$(\delta^0 - \overline{\delta}^0), \delta^+, \overline{\delta}^-$	$\sim M_R$
color octet and singlet of $(15,1,1)_A$	$\sim M_1 \equiv \max \left[rac{M_R^2}{M_C}, rac{M_C^2}{M_X} ight]$
$(\delta^0 + \overline{\delta}^0), \delta^{++}, \overline{\delta}^{}$	$\sim M_2 \equiv M_R^2/M_X$