

The Constrained E₆SSM

David J Miller The 2009 Europhysics Conference on High Energy Physics 17th July 2009

Based on:

P. Athron, S.F. King, DJM, S. Moretti, R. Nevzorov arXiv:0901.1192 arXiv:0904.2169

[S.F.King, S.Moretti & R. Nevzorov, Phys.Rev. D73 (2006) 035009 ; Phys.Lett. B634 (2006) 278-284]

"Inspired" by the gauge group E_6 , breaking to the SM via

$$E_{6} \rightarrow SO(10) \times U(1)_{\psi}$$

$$\downarrow SU(5) \times U(1)_{\chi}$$

$$\downarrow SU(3)_{C} \times SU(2)_{W} \times U(1)_{Y}$$

where only one linear superposition of the extra U(1) symmetries survives to low energies:

$$U(1)_N = \frac{1}{4}U(1)_{\chi} + \frac{\sqrt{15}}{4}U(1)_{\psi}$$

This combination is required in order to keep the right handed neutrinos sterile.

So the E₆SSM is really a $SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_N$ gauge theory.

Matter Content

All the SM matter fields are contained in one 27-plet of E_6 per generation.

Placing each generation in a 27-plet forces us to have new particle states.:

- Now have 3 generations of Higgs bosons. Only the third generation Higgs boson gains a VEV. The others are neutral and charged scalars - we call them "inert Higgs".
- Three generations of singlets, S_i with $\langle S_3
 angle
 eq 0$
- New coloured triplets of "exotic quarks" D_i and \overline{D}_i with charge $\pm 1/3$.

[+ right handed neutrinos]

New gauge group structure, with unification:

- Extra U(1) \rightarrow extra gauge boson, $\mathbb{Z}^{!}$. After ewsb this will become massive (after eating the imaginary part of S_3)
- Additional SU(2) doublets H' and $\overline{H'}$, relics of an additional 27' and 27' which survive down to low energies, and are required for gauge unification.

Discrete Symmetries

J Z_2^B or Z_2^L Symmetries

To prevent proton decay, we need a baryon or lepton symmetry This is analogous to R-parity in the MSSM Note that the exotic D is odd, so must decay to a susy particle

 $Z_2^B \longrightarrow D$ is a leptoquark $Z_2^L \longrightarrow D$ is a diquark

Approximate Z₂^H Symmetry

To evade large Flavour Changing Neutral Currents, we need another Z₂

Make the 3rd generation Higgs and singlet superfields even, all other fields odd.

Must only be approximate to allow exotic particles to decay.

For a Renormalisation Group analysis and mass spectra, Z_2^H violating couplings can be neglected.

E₆SSM Superpotential

To simplify the model a little:

- Impose $Z_2^{B/L}$ and (approximate) Z_2^{H} symmetries,
- Integrate out heavy right-handed Majorana neutrinos,

Assume a hierarchical structure of Yukawas, and keep only large ones.

$$W_{E_6SSM} \simeq \lambda S(H_d H_u) + \lambda_{\alpha} S(H_{1,\alpha} H_{2,\alpha}) + \kappa_i S(D_i \overline{D}_i)$$
$$+ h_t (H_u Q) t^c + h_b (H_d Q) b^c + h_\tau (H_d L) \tau^c + \mu' (H' \overline{H'})$$

Note: this is really an oversimplification – we have lots of very small Z_2^H violating couplings such as $g_{ijk}D_i(Q_jQ_k)$ which are unimportant for production, but may be important for decays.

Also need lots of new SUSY breaking parameters.

The Constrained E6SSM

The E_6 SSM has 43 new parameters compared with the MSSM (14 are phases).

But if we apply constraints at the GUT scale, this is drastically reduced.

Set:

$$g_1(M_X) = g_2(M_X) = g_3(M_X) = g'_1(M_X)$$

Important parameters:

$$\lambda_i, \kappa_i, h_t, h_b, h_{\tau}, m_0, M_{1/2}, A$$

We derived Renormalisation Group Equations, and modified SoftSuSY [Allanach, arXiv:hep-ph/0104145] to run down the GUT scale parameters to low energies.

- Gauge and Yukawa couplings (2 loop),
- Soft breaking gaugino and trilinear masses (2 loop),
- Soft scalar masses (1 loop).

The evolution of Gauge and Yukawa couplings doesn't depend on the soft SUSY breaking so they can be done separately and fed into the

Sensitive to thresholds.

 \blacksquare At one-loop $eta_3pprox 0$, so need two loops.

Gauge and Yukawa couplings

Soft SUSY breaking parameters

Generically, we can write

To ensure phenomenologically acceptable solutions, we require

 \checkmark squarks and gluinos $\gtrsim 300~GeV$

 \blacksquare exotic quarks and squarks \gtrsim 300 GeV [HERA]

- ${ { \, { \hspace{-.02in} I \hspace{-.02in$
- Insist on neutralino LSP (sort of)
- Seep Yukawa couplings $\lesssim 3$
- \checkmark Inert Higgs and Higgsinos \gtrsim 100 GeV

Allowed regions in the $m_0 - M_{\frac{1}{2}}$ plane

Set
$$aneta=10,\,s=3,4,5\,{ ext{TeV}},\,\lambda_{1,2}=0.1$$
 , and vary λ_3 and $\,\kappa=\kappa_{1,2,3}$

Firstly, notice that for most allowed scenarios $m_0\gtrsim M_{1/2}$, so squarks tend to be heavier than the gluino

Benchmark A

• $\kappa_1 = \kappa_2 = \kappa_3$ so Ds are degenerate and rather heavy

Benchmark C

• $\kappa_1 = \kappa_2 \neq \kappa_3$ so degeneracy of Ds is lifted.

Iightest exotic quark is 300 GeV

Benchmark E

Heavy Exotics

it is possible to construct scenarios where all exotic particles are heavy

gluino is still lighter than the squarks

The 2009 Europhysics Conference on High Energy Physics

If the exotic quarks are light, their discovery at the LHC should be rather straightforward.

Since the exotic quarks are colored, their production cross-sections are very large

LHC signatures: Exotic quarks

 \mathcal{V}_{τ}

Assuming Ds couple predominantly to the 3rd generation:

Diquarks decay to $\tilde{t}b, t\tilde{b}, so$ would give an enhancement to

$$pp \to t\bar{t}b\bar{b} + E_T^{miss} + X$$

• Leptoquarks decay to $\tilde{t} au, \ t ilde{ au}, \ \tilde{b}
u_{ au}, \ b ilde{
u_{ au}}$ so give enhancements to

$$pp \to t\bar{t}\tau^+\tau^- + E_T^{miss} + X$$

$$pp \to b\overline{b} + E_T^{miss} + X$$

Notice that SM production of $t\bar{t}\tau^+\tau^-$ is suppressed by $(\alpha_W/\pi)^2$ in comparison.

If the Z_2^H violating coupling, e.g. $g_{ijk}D_i(Q_jQ_k)$ is very small, D quarks may hadronize before they decay leading to spectacular signatures.

Interpretation of the second state of the second state of the LSP.
Interpretation of the LSP.

They give an enhancement to, e.g. $pp \to t \bar{t} \tau \bar{\tau} + X$

Note that the Tevatron rules out the scalar diquarks lighter than about 630 GeV and scalar leptoquarks lighter than about 300 GeV.

Inert Higgs decays are similar to their MSSM counterparts

$$\begin{array}{lll} H^0_{1,\,i} \to b\bar{b} & H^-_{1,\,i} \to \tau\bar{\nu}_{\tau} \\ \\ \tilde{H}^0_i \to t\tilde{\bar{t}}^* & \tilde{H}^0_i \to \tau\tilde{\bar{\tau}}^* & \tilde{H}^+_i \to t\tilde{\bar{b}}^* & \tilde{H}^-_i \to \tau\tilde{\bar{\nu}}^*_{\tau} \end{array}$$

Scenarios with heavy exotics

Even if all the exotic particles are heavy, the cE_6SSM still makes striking predictions.

- light gluino, much lighter than the squarks
- Iight neutralinos $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$
- light chargino $\tilde{\chi}_1^{\pm}$

Gluino decays will provide an enhancement of $pp \rightarrow q\bar{q}q\bar{q} + E_T^{\text{miss}} + X$ q \tilde{q} $\tilde{\chi}_1^{\mathfrak{l}}$ \tilde{q} $\tilde{\chi}_1^{\mathfrak{l}}$

Conclusions and Summary

- The E_6 SSM provides a credible example of a model which could arise from a GUT, where each generation forms a complete 27-plet of E_6 .
- We have examined a constrained E₆SSM, using RGEs to construct realistic, phenomenologically reasonable scenarios at LHC energies.
- The model predicts a light gluino, much lighter than the squarks, light neutralinos, $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$, and a light chargino $\tilde{\chi}_1^{\pm}$.
- It also predicts new exotic quarks and squarks, "inert" Higgs bosons, and a Z'.
- If the new exotic quarks are light, they will give striking signatures, such as a significant enhancement to $pp \rightarrow t\bar{t}b\bar{b} + E_T^{miss} + X$ which should be easily observable at the LHC.