The LAGUNA project -

towards the giant liquid based detectors for proton decay searches and for low energy neutrino astrophysics.

Jan Kisiel, Institute of Physics, University of Silesia, Katowice, Poland

Jan.Kisiel@us.edu.pl

(on behalf of the LAGUNA project)

Scheme of presentation

- The LAGUNA project general information
- The detector techniques considered (liquid scintillator, water, liquid argon)
- Underground sites in Europe considered
- Selection from LAGUNA physics program:
 - matter instability (proton decay),
 - geo-neutrinos.
- Outlook

LAGUNA – general information

- LAGUNA: Large Apparatus for Grand Unification and Neutrino Astrophysics
 Design Study in the framework FP7 (submitted 02.05.2007, 2 years duration from 01.08.2008, coordinating person: A.Rubbia, ETH Zürich, funding - 1.7 mln €) with main goal:
 - studies of possible localizations (in Europe) of a new underground laboratory able to host a very massive (10⁵-10⁶ tons) liquid based detector; all existing underground laboratories in Europe are too small.

LAGUNA – participating institutions

- •21 beneficiaries
 - 16 scientific partners
 - 5 industrial partners
- 9 affiliated scientific institutions
- •about 100 participants from 11 countries

Beneficiary no.	Beneficiary name	Beneficiary short name	Country	Date enter project	Date exit project
1. (coordinator)	Swiss Federal Institute of Technology Zurich	ETH Zurich	Switzerland	1	24
2.	University of Bern	U_Bern	Switzerland	1	24
3.	University of Jyväskylä	U_Jvväskylä	Finland	1	24
4.	University of Oulu	U-Oulu	Finland.	1	24
5.	Kalliosuumittelu Oy Rockplan Ltd	Rockplan	Finland	1	24
6.	Commissariat à l'Energie Atomique / Direction des Sciences de la Matière	CEA	France	1	24
7.	Institut National de Physique Nucléaire et de Physique des Particules (CNRS/IN2P3)	IN2P3	France	1	24
s.	Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.	MPG	Germany	1	24
9.	Technische Universität München	TUM	Germany	1	24
10.	H.Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Krakow	IFJ PAN	Poland	1	24
11.	KGHM CUPRUM Ltd Research and Development Centre	KGHM CUPRUM	Poland	1	24
12.	Mineral and Energy Economy Research Institute of the Polish Academy of Sciences	IGSMIE PAN	Poland	1	24
13.	Laboratorio Subterraneo de Canfranc	LSC	Spain	1	24
14.	Universidad Autonoma, Madrid	UAM	Spain	1	24
15.	University of Granada	UGR	Spain	1	24
16.	University of Durham	UDUR	United Kingdom	1	24
17.	The University of Sheffield	U-Sheffield	United Kingdom	1	24
18.	Technodyne International Ltd	Technodyne	United Kingdom	1	24
19.	University of Aarhus	U-Aarhus	Denmark	1	24
20.	AGT Ingegneria Srl, Perugia	AGT	Italy	1	24
21.	Institute of Physics and Nuclear Engineering, Bucharest	IFIN-HH	Romania	1	24

EPS Conferer

LAGUNA – working packages

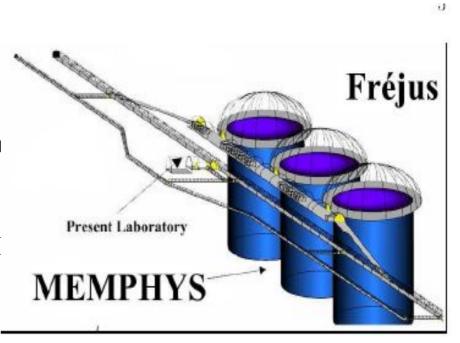
Work package no.	Work package title	Type of activity	Lead beneficiary no.	Person- months	Start mouth	End meath
WP1	Management, coordination and assessment	MGT	ETHZ	26.5	1	24
WP2	Underground Infrastructures and Engineering	RTD	TUM	157.5	1	24
WP3	Safety, environmental and socio-economic issues	RTD	U-Sheffield	46	1	24
WP4	Science Impact and Outreach	RTD	IFJPAN	49.9	1	24
	TOTAL			279.9		

LAGUNA – project description

Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects

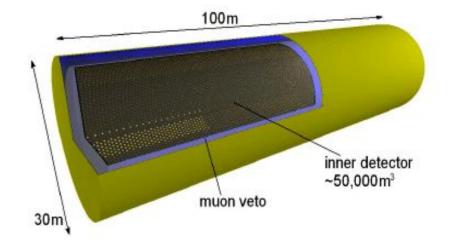
> D Autiero ¹, J Äystö ², A Badertscher ³, L Bezrukov ⁴, J Bouchez ⁵, A Bueno ⁶, J Busto ⁷, J-E Campagne ⁸, Ch Cavata 9, L Chaussard 1, A de Bellefon 10, Y Déclais 1, J Dumarchez ¹¹, J Ebert ¹², T Enqvist ¹³, A Ereditato ¹⁴, F von Feilitzsch ¹⁵, P Fileviez Perez ¹⁶, M Göger-Neff ¹⁷, S Gninenko ⁴, W Gruber ³, C Hagner ¹², M Hess ¹⁴, K A Hochmuth ¹⁷, J Kisiel ¹⁸, L Knecht ³, I Kreslo ¹⁴, V A Kudryavtsev ¹⁹, P Kuusiniemi ¹³, T Lachenmaier ¹⁵, M Laffranchi ³, B Lefievre ¹0, P K Lightfoot ¹⁹, M Lindner 20, J Maalampi 2, M Maltoni 21, A Marchionni 3, T Marrodán Undagoitia 15, J Marteau 1, A Meregaglia 3, M Messina 14, M Mezzetto 22, A Mirizzi 17,23, L Mosca 9, U Moser 14, A Müller 3, G Natterer 3, L Oberauer 15, P Otiougova ³, T Patzak ¹⁰, J Peltoniemi ¹³, W Potzel ¹⁵, C Pistillo 14, G G Raffelt 17, E Rondio 24, M Roos 25, B Rossi 14, A Rubbia 3, N Savvinov 14, T Schwetz 26, J Sobczyk ²⁷, N J C Spooner ¹⁹, D Stefan ²⁸, A Tonazzo ¹⁰, W Trzaska ², J Ulbricht ³, C Volpe ²⁹, J Winter ¹⁵, M Wurm ¹⁵, A Zalewska ²⁸ and R Zimmermann ¹²

arXiv:hep-ph/0705.0116

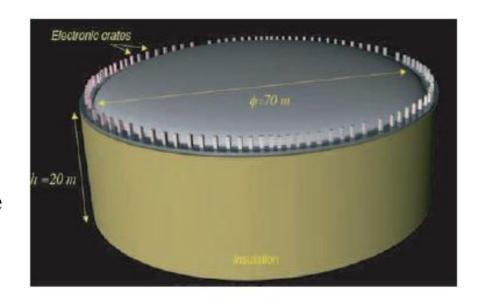

J. Cosmol. Astropart. Phys. 11 (2007) 011

LAGUNA: three detector technologies

- water Cherenkov: MEMPHYS, mass 420-1000 kton
- liquid scintillator: LENA, mass 30-70 kton
- liquid argon: GLACIER, mass 50-100 kton

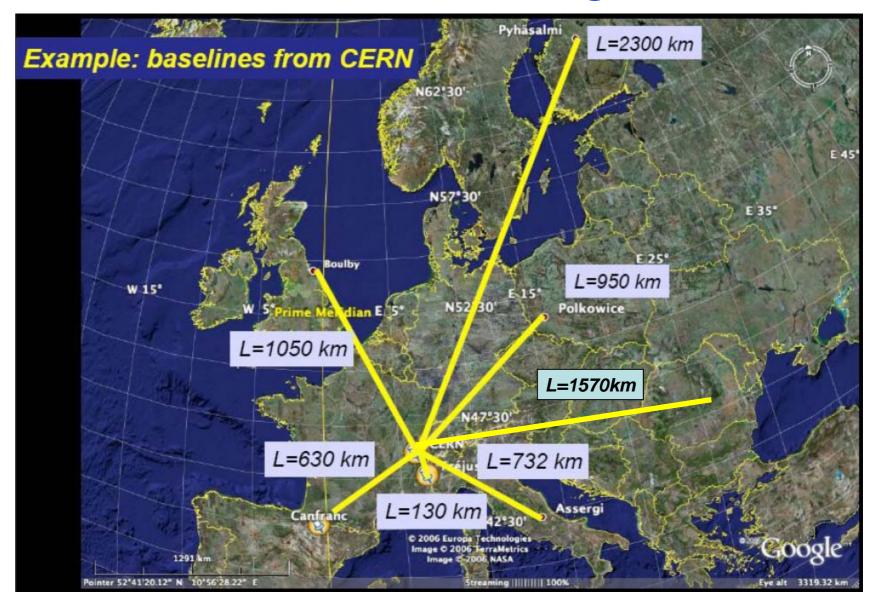

MEMPHYS (water Cherenkov)

- extrapolation of Super-Kamiokande detector
- 3-5 tanks in shafts 65m diameter and 65m height
- ~81000 12" PMTs (30% surface coverage) or 20" PMTs (40% coverage)
- possibility of introducing GdC (decrease of background by tagging neutrons from inverse beta decay)


LENA (liquid scintillator)

- one cylindrical tank (vertical or horizontal)
- inner volume contains about 50000m³ of liquid scintillator
- scintillation light detected by 12000 20" PMTs (30% surface coverage)
- outer part (muon veto) filled with water
- technology used in KamLAND and Borexino detectors

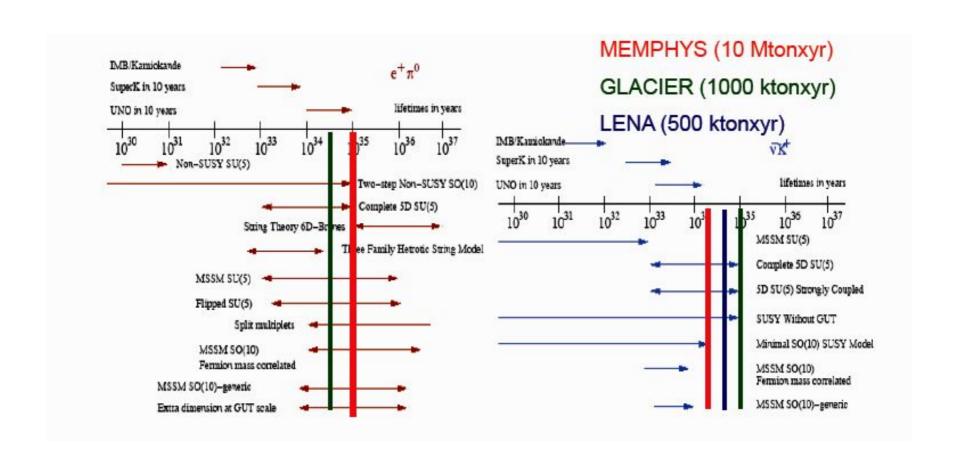
GLACIER (liquid argon)


- liquid argon (LAr) Time
 Projection Chamber (TPC)
- 3D reconstruction of events using information provided by ionization in LAr and light (scintillation and Cherenkov) readout by PTMs
- bi-phase mode (drifting electrons from liquid phase are extracted into gas phase and amplified)
- LAr TPC pioneered by the ICARUS experiment

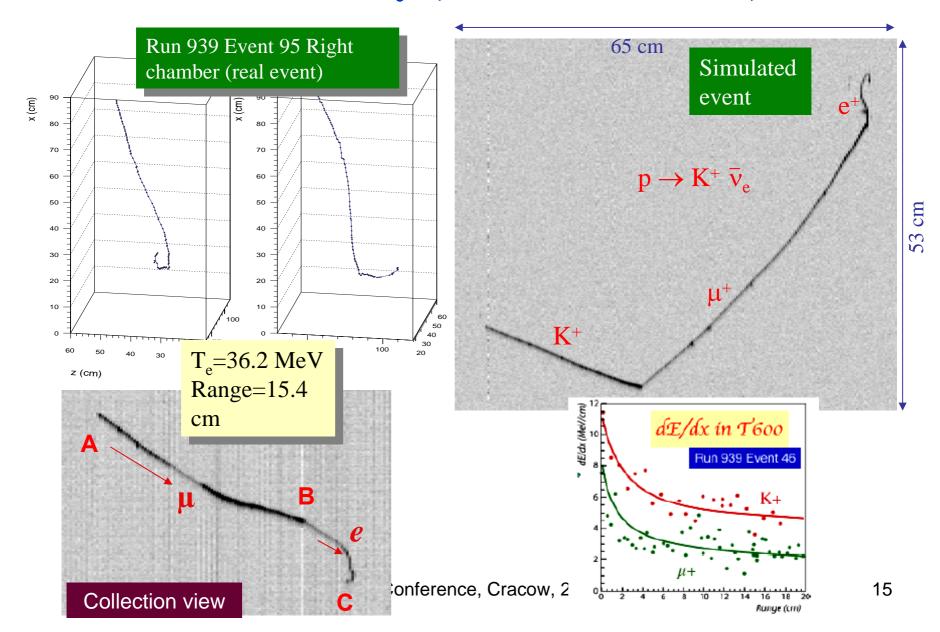
Underground sites: localization criteria

- Bedrock (type and rock quality for large cavern excavation)
- Reactor neutrino background (relevant to geo-neutrinos searches by LENA)
- Natural radioactivity background
- Depth (protection against cosmic-rays background)
- Baseline (distance from existing/future accelerator neutrino sources CERN?)

LAGUNA: considered underground sites

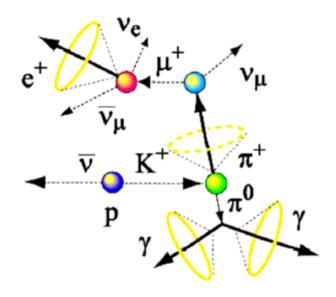

LAGUNA – physics program

- proton decay searches (matter instability)
- studies of low energy neutrinos:
 - neutrinos from supernova explosion,
 - solar neutrinos,
 - atmospheric neutrinos,
 - diffuse supernova neutrino background (relic neutrinos),
 - geo-neutrinos,
- studies of neutrinos from neutrino beams (neutrino factory, neutrino beta beam, neutrino superbeam)


```
arXiv:hep-ph/0705.0116

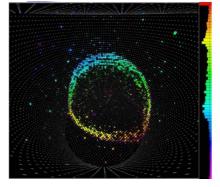
J. Cosmol. Astropart. Phys. 11 (2007) 011
```

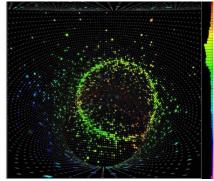
Proton decay sensitivity



Proton decay (in LAr, ICARUS)

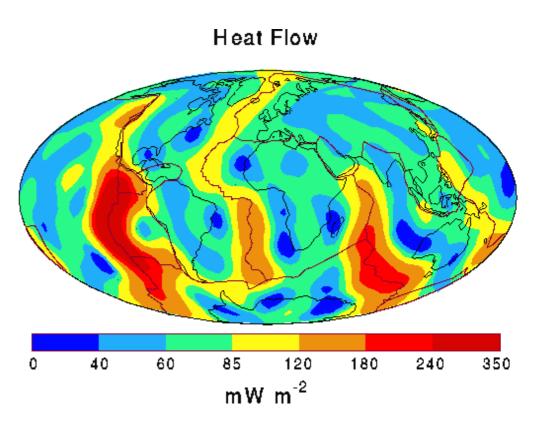
Proton decay (in water, Super-Kamiokande)


$$p \rightarrow \nu K^+, K^+ \rightarrow \pi^+ \pi^0$$


(K.Kobayashi, UNO meeting, 2005)

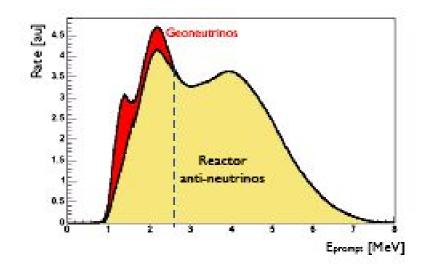
- K⁺ momentum below the water Cherenkov threshold → detection of its decay products
- signature:
 - two e-like Cherenkov rings
 - one Michel electron
 - kinematical cuts

Super-Kamiokande



e – like ring

Geo-neutrinos


- •the total power dissipated from the Earth is 44.2±1.0 TW (31±1 TW, recent evaluation of the same data), in average about 90 mW/m²
- •about 16 TW is from ²³⁸U and ²³²Th decay which produce electron antineutrinos (geo-neutrinos) by β decay
- •the measurement of geo-neutrinos flux is important for geophysics

http://geophysics.ou.edu/geomechanics/ notes/heatflow/global_heat_flow.htm

Geo-neutrinos (cont.)

- the first observation of geoneutrinos: KamLAND (*Nature* 436 (2005) 499)
 - 1kton liquid scintillator
 - measured rate: 25±19 for total background 127±13 ev
 - background: 2/3 nuclear reactors, 1/3 natural radioactivity
 - upper limit (<60 TW) for radiogenic heat production
- for LENA at Pyhäsalmi: 1000 events / year with 240 events of background

Physics potential (overview)

Table 1 Overview of the physics potential of the three types of instruments considered

Topics	GLACIER (100 kt)	LENA (50 kt)	MEMPHYS (400 kt)
proton decay, sensitivity (years) decay mode e+π ⁰ decay mode anti-v K+	0.5 · 10 ³⁵ 1.1 · 10 ³⁵	TBD 0.4 · 10 ³⁵	1.0 · 10 ³⁵ 0.2 · 10 ³⁵
SN at 10 kpc, # events CC NC ES	2.5 · 10 ⁴ (v _e) 3.0 · 10 ⁴ 1.0 · 10 ³ (e)	9.0 · 10 ³ (anti-v _e) 3.0 · 10 ³ 5.0 · 10 ³ (p) 6.0 · 10 ² (p)	2.0 · 10 ³ (anti-v _e) · 1.0 · 10 ³ (e)
Diffuse SN # Signal/Background events (after 5 years)	60/30	(10-115)/4	(40-110)/50 (with Gadolinium)
Solar neutrinos # events, 1 year	⁸ B ES : 4.5 · 10 ⁴ Abs: 1.6 · 10 ⁵	⁷ Be: 2.0 · 10 ⁶ pep: 7.7 · 10 ⁴ CNO: 7.6 · 10 ⁴ ⁸ B(CC): 3.6 · 10 ² ⁸ B(NC): 5 · 10 ³	⁵ B ES: 1.1 · 10 ⁵
Atmospheric v # events, 1 year	1.1 · 104	TBD	4.0 · 10 ⁴
Geo-neutrinos # events, 1 year	Below threshold	1.5 · 10 ³	Below threshold

Outlook

- All three different detection techniques (liquid scintillator, water and liquid argon) offer very rich (in some extent complementary) physics program
- The LAGUNA should give a recommendation for the localization of new European underground laboratory
- The first deliverable of the LAGUNA project (Health, Safety, Environment and Socio-Economic Overview Report) has been submitted.