

CMOS Pixel Sensors for High Precision Beam Telescopes and Vertex Detectors

Rita De Masi

IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration

- Principle of operation
- Achievements and applications
- Developments
- Summary and conclusions

CMOS sensor principle

- Signal collection
 - Charges generated in epitaxial layer → ~1000 e⁻ for MIP
 - Charge carriers propagate thermally
 - In-pixel charge to signal conversion
- Advantages
 - High granularity
 - Thickness (\sim O(50 μ m))
 - Integrated signal processing
- Issues
 - Undepleted volume limitations diode
 - radiation tolerance
 - · intrinsic speed
 - Small signal O(100e⁻)/pixel
 - In-pixel μ-circuits with NMOS transistors only

Basic performances

- more than 30 different sensors designed, fabricated and tested (lab & beam)
- extensive use of AMS 0.35μm OPTO process
- room temperature operation
- noise ~10-15e
- S/N ~ 15-30
- detection efficiency ~100%
- fake hit rate ~10-4 -10-5
- Radiation tol. > 1MRad and 10^{13} n_{eq}/cm² with 10μ m pitch ($2x10^{12}$ n_{eq}/cm² with 20μ m pitch)
- spatial resolution 1-5 μm (pitch and charge-encoding dependent)

Mimosa 26

Fast full scale sensors: 10kFrame/s column parallel architecture + integrated zero-suppression

- binary output
 (3.5-4 μm spatial resolution)
- in-pixel CDS +preamp.
- column level discrimination
- power dissipated ~150 mW/cm²
 (rolling shutter)
- integration time ~100μs
- validated in lab

21.5 mm

Characterisation @ CERN-SPS this summer

Mimosa 26 applications

- Reference planes of EUDET Beam Telescope
 - Supported by EU FP6
 - Infrastructure to support the ILC detector R&D
 - Commissioning @ CERN summer 2009

- STAR @ RHIC Heavy Flavour Tracker
 - 1152 x 1024 pixels; 200μs integration time
 - Submission end 2009
 - First data 2011/2012

- CBM @ FAIR Micro Vertex Detector
 - Double sided readout (40→20µs integration time)
 - Prototyping until 2012

A VTX detector for the International Linear Collider

Physics requirements

- single point resolution $\sim 3\mu m$
- material budget ~0.2% X₀/layer
- integration time 25 100 μs
- radiation tolerance ~0.3MRad, few 10¹¹n_{eq}/cm²

$$\sigma_{IP}$$
 = a \oplus b/psin^{3/2}θ a = 5μm, b = 10μm GeV (LHC a = 12μm, b = 70μm GeV)

A modified Mimosa 26

- Double sided readout
- 0.18 μm technology
- Integration issue → PLUME project : double sided ladder equipped with 2x6 M26 (TDR 2012) first prototype to be tested in SPS beam next November

Further developments: Mimosa 25

• High resistivity epitaxial layer (O(10³) Ω·cm) from XLAB 0.6μm process

- 20 μm pixel pitch, 160 μs readout, ~1 mm² sensitive area
- Cluster size ~ 2×2 pixels (3×3 for low resistivity epi-layer)
- S/N ~ 50 for seed (20-25 for low resistivity epi-layer)
- S/N ~ 35 @ 10^{13} n_{eq}/cm²
- Improved tolerance to non-ionizing radiation (1-2 OM)
- Full characterization @ CERN-SPS this summer
- New: VDSM technology under study in coll. with CERN for sLHC

Further developments: 3D

Benefits:

- Increase integrated processing
- 100% sensitive area
- Select best process per layer task

To be assessed:

- Material budget?
- Power dissipation?

2D or planar IC

Example

- Tier1: charge collection
- Tier2: analog signal processing
- Tier3: digital signal processing
- Tier4: data transfer

FNAL + IN2P3 + INFN + ... consortium

First run (2 Tiers) submitted to Chartered-Tezzaron

Summary and conclusions

- Current CMOS sensors
 - Mature technology for real scale applications
 - High resolution, very low material budget
 - Application under way
 - EUDET-BT, STAR-HFT, CBM-MVD (R&D)
 - ILC-VTX (Option)
- New perspectives
 - Depleted sensitive volume (Non ionizing rad. tol. improved by >1 OM → sLHC)
 - 3D integration technology

More information on http://www.iphc.cnrs.fr/-CMOS-ILC-.html