HEP 2009

2009 Europhysics Conference on High Energy Physics July 16 - 22, 2009 Krakow, Poland

Jets and subjets at HERA

Claudia Glasman Universidad Autónoma de Madrid

from

ZEUS Collaboration

Jets and subjets at HERA

- Jet production and jet substructure has been extensively studied at HERA
- Jet cross sections have proven to be a powerful tool
 - → to test pQCD and the SM
 - → Multi-jet cross sections in CC DIS (ZEUS Collab, PRD 78 (2008) 032004)
 - → to constrain the gluon pPDFs
 - → see Juan Terrón's talk
 - \rightarrow to determine α_s
 - → see Joerg Behr's talk
 - → to test the underlying colour dynamics
 - → Angular correlations in three-jet events (ZEUS Collab, DESY-08-100)
- Jet substructure has been proven to be a powerful tool
 - → to test the pattern of parton radiation
 - → to test splitting functions
 - → to study colour-coherence effects
 - → to test underlying colour dynamics
 - → Subjet distributions in DIS (ZEUS Collab, DESY-08-178)
 - → Three-subjet distributions in DIS (ZEUS Collab, ZEUS-prel-09-007)

Jet production in DIS at HERA

• Jet production in NC and CC deep inelastic ep scattering up to $\mathcal{O}(\alpha_s)$:

Jet production cross section for DIS is given in QCD by:

$$d\sigma_{
m jet} = \sum_{a=q,ar q,g} \int dx \; f_a(x,\mu_F) \; d\hat\sigma_a(x,lpha_s(\mu_R),\mu_R,\mu_F) \; .$$

- $-f_a$: parton a density, determined from experiment → long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD → short-distance structure of the interaction

Kinematics:

— momentum transfer:

$$Q^2=-q^2=-(k-k')^2$$

Bjorken x : $x=rac{Q^2}{2P\cdot q}$

- inelasticity:

$$y = \frac{P \cdot q}{P \cdot k} = 1 - \frac{E'_e(1 - \cos \theta_e)}{2E_e}$$

CC DIS and QCD

- $e^{\pm}p
 ightarrow
 u\,+\,{
 m jet}\,+\,{
 m X}$ (inclusive jets)
- ullet Jets searched using the k_T cluster algorithm in LAB frame
- ullet Kinematic region: $Q^2>200~{
 m GeV}^2$ and y<0.9
- ullet At least one jet with $E_T^{
 m jet} > 14~{
 m GeV}$ and $-1 < \eta^{
 m jet} < 2.5$
- $\mathcal{L} = 359 \text{ pb}^{-1} !!!$
- ullet The measured cross section for the e^+p sample decreases more rapidly than for the e^-p sample
- Comparison to NLO QCD predictions:
 - → the shape and magnitude of the measured cross sections are reasonably well described by the predictions
- ullet Ratio of e^-p to e^+p cross sections expected to be pprox 2
 - ightarrow increase at high $E_T^{
 m jet}$ values expected due to increasing contribution from valence-quark densities at high x
 - → both reactions are sensitive to different quark flavours

ZEUS Collab, Phys Rev D 78 (2008) 032004

CC DIS and the proton PDFs

• Inclusive-jet cross sections in charged-current deep inelastic $e^\pm p$ scattering:

- → Good description of data by NLO QCD calculations
- → Theoretical uncertainties dominated by PDF uncertainty
 - ightarrow measured cross sections can help to constrain further u and d PDFs

CC DIS and polarisation

- Inclusive-jet cross sections in charged current DIS with longitudinally-polarised e^\pm beams
- SM prediction for polarisation dependence:

$$\sigma_{CC}^{\pm}(P_e) = (1 \pm P_e)\sigma_{CC}^0$$

- $igoplus ext{jet cross sections in CC } e^\pm$ for different P_e
 - ⇒ Good agreement with SM predictions

ZEUS Collab, Phys Rev D 78 (2008) 032004

Multi-jet production in CC DIS and QCD

do/dM^{jj} (pb/GeV

 $Q^2 > 200 \text{ GeV}^2$

 $-1 < \eta^{jet} < 2.5$

 $E_{T}^{jet1(2)} > 14 (5) \text{ GeV}$

v < 0.9

• ZEUS CC e p 180 pb⁻¹

• ZEUS CC e⁺p 179 pb⁻¹

- NLO diiets

ullet Additional jets with $E_T^{
m jet} > 5$ GeV

- The measured dijet cross sections are not well described by NLO
- The shape of the measured three-jet cross sections are well described by LO

• First observation of 3- and 4-jet production in CC DIS

ZEUS Collab, Phys Rev D 78 (2008) 032004

Underlying group symmetry and colour factors

 The colour factors represent the relative strength of the processes and their relative contributions

- Their values are predicted by the underlying gauge-group structure
 - ightarrow for SU(N): $C_F=(N^2-1)/2N$, $C_A=N$, $T_F=1/2$
- ullet Since the couplings qqg and ggg have different spin structures, the colour factors give rise to a specific pattern of angular correlations between the final-state jets
- ullet Colour factors extensively studied at LEP by measuring angular correlations between final-state jets in $e^+e^- o 4$ jets and C_A/C_F and T_F/C_F determined
- ullet In ep collisions at HERA, colour factors are studied using angular correlations

 $C_F \cdot C_A$

• The predicted cross section at $\mathcal{O}(\alpha\alpha_s^2)$ can be written as

$$\sigma_{ep o 3 ext{jets}} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

Angular correlations in three-jet events

POSITRON

ZEUS

- Variables to highlight the contributions from the different colour configurations
 - → angular correlations between the three jets
- $\rightarrow \theta_H$: the angle between the plane determined by the highest $E_T^{
 m jet}$ and the beam and the plane determined by the two lowest $E_T^{
 m jet}$ jets (Muñoz-Tapia, Stirling)
- $ightarrow lpha_{23}$: the angle between the two lowest $E_T^{
 m jet}$ jets (inspired by the variable $\alpha_{34}^{e^+e^-}$ for $e^+e^-\to 4{\rm jets}$)
- $\rightarrow \beta_{KSW}$: defined by $\coseta_{KSW} = \cosrac{1}{2}[\angle[(ec{p}_1 imesec{p}_3),(ec{p}_2 imesec{p}_B)] + \angle[(ec{p}_1 imesec{p}_B),(ec{p}_2 imesec{p}_3)]],$ where $ec{p}_i$ is the momentum of jet i (ordered according to decreasing $E_{_{m{T}}}^{
 m jet}$) and \vec{p}_B is a unit vector in the direction of the proton beam (inspired by the Körner-Schierholz-Willrodt angle $\Phi_{KSW}^{e^+e^-}$ for $e^+e^- o 4 \mathrm{jets}$)
- $\rightarrow \eta_{\rm max}^{
 m jet}$: pseudorapidity of the most forward jet

PHOTON

Three-jet events in NC DIS and colour configurations $(1/\sigma) \ d\sigma/d\Theta_{ m H}$

$$ep \rightarrow e + 3jet + X$$

- ullet Jets searched using the k_T cluster algorithm in Breit frame
- ullet Kinematic region: $Q^2>125~{\sf GeV}^2$ and $|\cos\gamma_h|<0.65$
- ullet Three jets with $E_{T,\mathrm{B}}^{\mathrm{jet}} > 8(5)~\mathrm{GeV}$ and $-2 < \eta_{\mathrm{B}}^{\mathrm{jet}} < 1.5$
- Predictions for the angular correlations show sensitivity to the different colour configurations
- The distribution for σ_B has a very different shape than the others in all variables
- The distribution for σ_D has a different shape than the others in $\eta_{\rm max}^{\rm jet}$
- The predicted relative contributions of each colour configuration in SU(3) are

$$\rightarrow \sigma_B$$
 ($C_F C_A$): 13%

$$\rightarrow \sigma_C$$
 (C_FT_F): 39%

$$\rightarrow \sigma_D (T_F C_A)$$
: 25%

 \rightarrow A total of 38% for diagrams which involve C_A (TGV)

ZEUS Collab, DESY-08-100

0.01

Angular correlations and underlying gauge symmetry

• Measured normalised three-jet cross sections in NC DIS vs $\mathcal{O}(\alpha_s^2)$ predictions based on different symmetry groups

- ullet The data disfavour SU(N) in the limit of large N and $C_F=0$ symmetry groups
- The measurements are consistent with the admixture of colour configurations as predicted by SU(3)
 - \rightarrow the discrepancies observed can be attributed to higher orders \rightarrow

Angular correlations and underlying gauge symmetry

• Measured normalised three-jet cross sections in NC DIS vs $\mathcal{O}(\alpha_s^3)$ predictions based on SU(3) symmetry group

- Very good description of data by SU(3) at $\mathcal{O}(\alpha_s^3)$
- Potential to extract the colour factors from these measurements
 - \rightarrow NLO analysis and more statistics to be able to distinguish SU(3) and U(1) 3 are required

Two-subjet distributions

• Subjets: jet-like substructures identified by reapplying the k_T algorithm at smaller values of the resolution parameter y_{cut}

Subjet distributions can be used to study:

→ pattern of parton radiation from a primary parton

 \rightarrow direct test of splitting functions $P_{ab}(z,\mu)$ and their scale dependence

- → colour coherence
 - → soft gluon radiation tends to be emitted towards proton direction

Measurements of normalised cross sections as functions of Subjets

$$E_T^{
m sbj}/E_T^{
m jet}$$
, $\eta^{
m sbj}-\eta^{
m jet}$, $|\phi^{
m sbj}-\phi^{
m jet}|$ and $lpha^{
m sbj}$ and their dependence with $E_T^{
m jet}$, Q^2 and x

- Jets searched using the k_T cluster algorithm in LAB frame
- Kinematic region: $Q^2 > 125 \text{ GeV}^2$
- At least one jet with $E_T^{
 m jet}\!>\!14$ GeV and $-1\!<\!\eta^{
 m jet}\!<\!2.5$
- Final sample: jets that have two subjets for $y_{\mathrm{cut}}\!=\!0.05$

n

Two-subjet distributions and pattern of parton radiation

Normalised subjet cross sections compared with NLO calculations:

- $ullet E_T^{
 m sbj}/E_T^{
 m jet}$: the two subjets tend to have similar $E_T^{
 m sbj}$
- $\eta^{\rm sbj} \eta^{\rm jet}$: asymmetric two-peak structure
- $|\phi^{\mathrm{sbj}} \phi^{\mathrm{jet}}|$: suppression around 0 because the two subjets cannot be
- because the resolved when close $\alpha^{\mathrm{sbj}} : \text{higher } E_T^{\mathrm{sbj}} \text{ subjet tends to be in } \frac{1}{2}$
 - of $\eta^{\mathrm{sbj}} \eta^{\mathrm{jet}}$
- → The NLO predictions, which contain these diagrams,

ZEUS

describe the data adequately

0.6 $|\phi^{\text{sbj}} - \phi^{\text{jet}}|$ (rad)

0.2

0.4

ZEUS Collab, DESY-08-178

Two-subjet distributions and colour coherence

ullet $\eta^{
m sbj}$ $-\eta^{
m jet}$ normalised cross section for $E_{T,{
m low}}^{
m sbj}/E_{T}^{
m jet} < 0.4$

- ightarrow The higher (lower) $E_T^{
 m sbj}$ subjet tends to be in the rear (forward) direction
 - → colour-coherence effects between the initial and final states

Two-subjet distributions and parton splitting

Comparison with predictions for quark- and gluon-induced processes

→ NLO prediction:

81% of q-induced and 19% of g-induced

- Predictions for these two types of processes are different:
 - the two subjets in q-induced have more similar $E_T^{{
 m Sb}\, {
 m j}}$ and are closer to each other than in g-induced
- → The data are better described by the calculations for jets arising from the splitting of a quark into a quark-gluon pair

Three-subjet distributions

- Subjet distributions can be used to study:
 - → pattern of parton radiation from a primary parton
 - ightarrow direct test of splitting functions $P_{ab}(z,\mu)$ and their scale dependence
 - → colour coherence
 - → soft gluon radiation tends to be emitted towards proton direction
 - → underlying group symmetry
 - ightarrow angular correlations between three subjets should show sensitivity to the colour configurations
- Measurements of normalised cross sections as functions of

$$E_T^{
m sbj}/E_T^{
m jet}$$
, $\eta^{
m sbj}-\eta^{
m jet}$, $|\phi^{
m sbj}-\phi^{
m jet}|$, $eta^{
m sbj}$, $^{
m ullet}$ $heta_H$, $lpha_{23}$ and γ

- Jets searched using the k_T cluster algorithm in LAB frame
- Kinematic region: $Q^2 > 125 \text{ GeV}^2$
- At least one jet with $E_T^{
 m jet}\!>\!14$ GeV and $-1\!<\!\eta^{
 m jet}\!<\!2.5$
- Final sample: jets that have three subjets for $y_{\rm cut}\!=\!0.03$

Three-subjet distributions and pattern of parton radiation

Normalised subjet cross sections compared with LO calculations:

- $ullet E_T^{
 m sbj}/E_T^{
 m jet}$: the three subjets tend to have similar $E_T^{
 m sbj}$
- $\eta^{\mathrm{sbj}} \eta^{\mathrm{jet}}$: asymmetric two-peak structure
- $|\phi^{\rm sbj} \phi^{\rm jet}|$: suppression around 0 because the subjets cannot be resolved when close
- ullet $eta^{
 m sbj}$: lowest $E_T^{
 m sbj}$ subjet tends to be in forward direction
 - ightarrow consistent with asymmetric peaks of $\eta^{sbj}\!-\!\eta^{jet}$
- ightarrow The LO predictions describe the data adequately, except for eta^{sbj} (higher orders?)

Angular correlations in three-subjet events

- Three-subjet angular correlations
 - $ightarrow heta_H$: the angle between the planes determined by the highest- E_T subjet and the beam and the two lowest- E_T subjets
 - ightarrow $lpha_{23}$: the angle between the two lowest- E_T subjets in the $\eta-\phi$ plane
 - $ightarrow \gamma$: the angle between the highest- E_T subjet and the vector difference of the two lowest- E_T subjets in the $\eta-\phi$ plane

ightarrow The $C_F \cdot C_A$ and $C_A \cdot T_F$ configurations display distinct behaviour

ZEUS Collab, ZEUS-prel-09-007

Angular correlations and underlying gauge symmetry

• Measured normalised three-subjet cross sections in NC DIS vs $\mathcal{O}(\alpha_s^2)$ predictions based on SU(3)

- The measurements are consistent with the admixture of colour configurations as predicted by SU(3)
- SU(3) predicts: 47% (C_F^2), 17% ($C_F \cdot C_A$), 27% ($C_F \cdot T_F$) and 9% ($T_F \cdot C_A$) \to a total of 26% for the components which involve C_A (TGV)
- Potential to extract the colour factors from these measurements

Conclusions

- Jet production and jet substructure are still being extensively studied at HERA
- Results shown:
 - * Multi-jet cross sections in CC DIS
 - * Angular correlations in three-jet events
 - * Two-subjet distributions
 - * Three-subjet distributions
- Measurements allow
 - → stringent tests of pQCD and the SM
 - **→ constraints on the proton PDFs**
 - → test of the underlying gauge symmetry
 - **→** study of pattern of parton radiation
 - **→** study of colour coherence
- → Jet analysis at HERA: a powerful tool that provides stringent tests of pQCD