

Phenomenology of the minimal $U(1)_{B-L}$ extension of the Standard Model

Lorenzo Basso (NExT Institute, UK)

LB, A. Belyaev, S. Moretti, C. Shepherd-Themistocleous: 0812.4313 [hep-ph] (to PRD) LB, A. Belyaev, S. Moretti, G.M.Pruna: 0903.4777 [hep-ph] (to JHEP)

The model: triply-minimal extension

A U(1) extension of the SM

New states:

- A scalar (χ , SM-singlet) $V = \dots + \lambda_1 (H^{\dagger}H)^2 + \lambda_2 |\chi|^4 + \lambda_3 H^{\dagger}H |\chi|^2$
- 3 RH neutrinos: $\nu_R \xrightarrow{\text{see-saw}} \nu_h (\mathcal{O}(100) \text{ GeV})$ (anomaly cancellation) $\mathscr{L}_Y = \cdots - y^{\nu} \overline{l_L} \nu_R \widetilde{H} - y^M \overline{(\nu_R)^c} \nu_R \chi + \text{H.c.}$

In certain regions of the parameter space, they both can be *long-lived* particles (later)

Covariant derivative:

$$D_{\mu}\Psi_{i} = \partial_{\mu}\Psi_{i} + i\left[g_{1}Y_{i}B_{\mu} + (\underline{Y_{i}\widetilde{g}} + (B - L)_{i}g_{1}')B_{\mu}'\right]\Psi_{i}$$

 $\widetilde{g} = 0 \longrightarrow \mathsf{NO} \; Z - Z' \text{ mixing }$

 $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

ψ	$SU(3)_C$	$SU(2)_L$	Y	B-L
q_L	3	2	$\frac{1}{6}$	$\frac{1}{3}$
u_R	3	1	$\frac{2}{3}$	$\frac{1}{3}$
d_R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$
l_L	1	2	$-\frac{1}{2}$	-1
e_R	1	1	$^{-1}$	-1
$ u_R $	1	1	0	-1
ν_R	1	1	U	-1

ψ	$SU(3)_C$	$SU(2)_L$	Y	B-L
Η	1	2	$\frac{1}{2}$	0
x	1	1	0	2

・ロト ・同ト ・ヨト ・ヨト

Z' Discovery potentials in di-muons

Significance contour levels plotted against g'_1 and $M_{Z'}$

(a)

← Tevatron and LEP bounds

$$\leftarrow$$
 LHC: $L = 100 \text{ fb}^{-1}$ ($\sqrt{s_{pp}} = 14 \text{ TeV}$)

and

$$\leftarrow$$
 LC: $L = 500 \text{ fb}^{-1}, \sqrt{s_{e^+e^-}} = 3 \text{ TeV}$

Z' Discovery potentials in di-muons

Significance contour levels plotted against g'_1 and $M_{Z'}$

(b)

← Tevatron and LEP bounds

$$\leftarrow LHC: L = 100 \text{ fb}^{-1} (\sqrt{s_{pp}} = 14 \text{ TeV})$$

and

← LC:
$$L = 10 \text{ fb}^{-1}$$
, $\sqrt{s_{e^+e^-}} = M_{Z'} + 10 \text{ GeV}$

Z' phenomenology

 $m_{\nu h} = 250 \; {\rm GeV}$ 1 TeV $p, p \to (\gamma, Z, Z') \to \mu^+ \mu^-$ ک 50 45 £ 50 £ 45 10 Diff. cross section (pb/20GeV) $Z_{B,I} \rightarrow I^{t} I$ 5 40 35 Ha 40 35 $a_{11} = 0.1, \Gamma = 3 \text{ GeV}$ $Z_{B-L} \rightarrow \sum_{q \neq t} q \bar{q}$ 30 10 30 $Z_{R-l} \rightarrow t \bar{t}$ 25 25 a., = 0.5, Γ = 78 GeV 20 20 $Z_{B-L} \rightarrow v_1 v_1$ 15 15 10 10 10 $Z_{B-L} \rightarrow v_h v_h$ 5 5 0 n 1 2 1 3 4 5 M₇ (TeV) M₇, (TeV) 10 10 $\sum BR\left(Z'_{B-L} \to l_k \overline{l_k}\right) \sim \frac{3}{4} \qquad \sum BR\left(Z'_{B-L} \to q_k \overline{q_k}\right) \sim \frac{1}{4}$ 10 1000 1500 2000 500

- Dominantly coupled to *leptons*
- $Z' \rightarrow \nu_h \nu_h$ up to $\sim 20\%$

- $g_1' < 0.5$ from RGE analysis
- Γ up to hundreds of GeV

・ロ・・ (日・・ 日・・ 日・・

2500

M_+_ (GeV)

ν_h phenomenology

- $\Gamma = \Gamma(m_{\nu l}/m_{\nu h})$
- ν_h can be a long-lived particle
- DISPLACED VERTICES

 χ can be decoupled from the SM: couples only to Z' and $\nu_{l,h}$: long-lived (under study)

$$\nu_h \textcircled{O} LHC: BR(Z' \to 3l + 2j + \not P_T(1\nu), l = e, \mu) \text{ up to } 2.5\%$$
$$m_T^2 = \left(\sqrt{M_{vis}^2 + P_{T,vis}^2} + |\not P_T|\right)^2 - \left(\vec{P_{Tvis}} + \vec{\not P_T}\right)^2 \xrightarrow{\text{V. Barger at all,}}_{Phys. Rev. D 36 (1987) 295}$$

$$M_{Z'} = 1.5 \text{ TeV}, g'_1 = 0.2: \sigma(pp \to Z') = 0.3 \text{ pb}$$

 $M_{\nu_h} = 200 \text{ GeV}, \mathscr{L} = 100 \text{ fb}^{-1}, \text{bin} = 20 \text{ GeV}$

Backgrounds:

$$\begin{split} & WZjj \text{ associated production } (\sigma_{3l}=246.7 \text{ fb}, l=e,\mu,\tau,\text{ w. cuts}) \\ & t\bar{t} \text{ pair production } (\sigma_{2l}=29.6 \text{ pb}, l=e,\mu) \text{ (3}^{rd} \text{ lep. from b-quark)} \\ & t\bar{t}l\nu \text{ associated production } (\sigma_{3l}=8.6 \text{ fb}, l=e,\mu,\tau) \end{split}$$

Cuts:

Kinematics, angular acceptance and isolation W rec. from jets: $|M_{jj} - 80 \text{ GeV}| < 20 \text{ GeV}$ Z' rec.: $\left|M_{3l,2j}^T - 1500 \text{ GeV}\right| < 250 \text{ GeV}$

Conclusions

- Simple SM extension at TeV scale, RH-neutrinos
- motivated by high-scale physics
- pure B L model, no Z Z' mixing
- · exiting new phenomenology from heavy neutrinos
 - \triangleright they bring the footprints of the B L model
 - \triangleright clarity of the signal: M^T
- Analysis done with CalcHEP, implementation with LanHEP
- background: under control, model independent analysis

Conclusions

- Simple SM extension at TeV scale, RH-neutrinos
- motivated by high-scale physics
- pure B L model, no Z Z' mixing
- · exiting new phenomenology from heavy neutrinos
 - \triangleright they bring the footprints of the B L model
 - \triangleright clarity of the signal: M^T
- Analysis done with CalcHEP, implementation with LanHEP
- background: under control, model independent analysis

displaced vertices and the measure of m_{ν_h} provide a link to low-energy physics

<u>FIRST</u> (IND.) MEASURE OF m_{ν_l}

Conclusions

- Simple SM extension at TeV scale, RH-neutrinos
- motivated by high-scale physics
- pure B L model, no Z Z' mixing
- · exiting new phenomenology from heavy neutrinos
 - \triangleright they bring the footprints of the B L model
 - \triangleright clarity of the signal: M^T
- Analysis done with CalcHEP, implementation with LanHEP
- background: under control, model independent analysis

displaced vertices and the measure of m_{ν_h} provide a link to low-energy physics

<u>FIRST</u> (IND.) MEASURE OF $m_{
u_l}$

- Nice interplay between Z', neutrinos and Higgs sector;
- (In progress) study of the Higgs sector:
 - ▷ width and branching, bounds (triviality, vacuum stability; unitarity)
 - \triangleright reliability of using Z'_{B-L} as *source* of Higgs, through $\nu_h \ (\nu_h \rightarrow \nu_l \ h_1)$

Backup slides

・ロト ・回ト ・ヨト ・ヨト

In Les Houches

unusual
$$Z_{B-L}^{\prime\star} \rightarrow Z_{B-L}^{'}h_2 \rightarrow \nu_h \nu_h (20\%) \nu_h \nu_h (100\%) \rightarrow 8l(8j) + P_T$$

 \vartriangleright Problem: $\sigma(pp \rightarrow Z_{B-L}^{'}h_{2}) = 0.1 \text{ fb... :(}$

Underling events / parton shower in Pythia/Sherpa to validate *W* reconstruction's cut

Highly boosted W/Z: $Z' \rightarrow \nu_h \nu_h$ where $\nu_h \rightarrow lW$ or νZ

Figure: P_T distribution of Ws and Zs (P_T ordered just in the WW case) for $M_{Z'} = 1.5$ TeV, $g'_1 = 0.2$, $M_{\nu h} = 200$ GeV, distinguished by signature.

20

Z' experimental limit

LEP bound:

G. Cacciapaglia et all, Phys. Rev. D 74 (2006) 033011

$$\frac{M_{Z'}}{g_1'} \ge 7 \text{ TeV}$$

Tevatron (Translating Z'_{SM} bound):

T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 102, 091805 (2009)

g'_1		$M_{Z'}$ (GeV)
0.06	65	600
0.07	75	680
0.09	90	740
0.		800
0.2	2	960
0.5	5	1140

Heavy neutrino: example

• we can measure independently displaced vertex $V = V(m_l, M)$ and heavy neutrino mass $M = m_h$

hence, putting altogether, we get

INDIRECT MEASURE OF LIGHT NEUTRINO MASS m_l

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Efficiencies

	W rec.)		et 1)	S	
$ M_{jj} - 80 \text{ GeV} $		V;	15 GeV;	>	P_{T,l_1}
	Z' rec.)	V;	40 GeV;	>	$P_{T,j_{1,2}}$
$ M_{3l,2j}^T - 1500 \text{ Ge}\rangle$			3;	<	$ \eta_{j_{1,2}} $
	Peak)		2.5;	<	$ \eta_{l_{1,2,3}} $
	. outy	$\forall l=1\dots 3, j=1,2$	$0.5 \forall l$	>	ΔR_{lj}
$0 < M_{2l}^T$			0.2;	>	$\Delta R_{l,l}$
$400 \text{ GeV} < M_{2l}^T$			0.5.	>	$\Delta R_{i,i}$

< 20 GeV;

$$\left| M_{3l,2j}^T - 1500 \text{ GeV} \right| < 250 \text{ GeV};$$

< 250 GeV or $400 \text{ GeV} < M_{2l}^T < 550 \text{ GeV};$

Cuts	Ev. Signal	Eff. %	Ev. $WZjj$	Eff. %	$Ev. t\overline{t}$	Eff. %	Ev. $t\overline{t}l\nu$	Eff. %	S/\sqrt{B}
set1	68.0	100	5875	100	99.6	100	89.1	100	0.87
Wrec.	68.0	100	498.	8.5	5.38	5.4	19.3	21.8	2.97
Z'rec.	58.8	86.5	10.5	12.7	0	0.8	0.0667	2.2	18.0
Peak	56.0	94.1	4.48	67.6	0	56.4	0.0305	64.8	26.3

(Events for $\mathscr{L} = 100$ fb $^{-1}$, $M_{\nu_h} = 200$ GeV)

Cuts	Ev. Signal	Eff. %	Ev. $WZjj$	Eff. %	$Ev. t\overline{t}$	Eff. %	Ev. $t\overline{t}l\nu$	Eff. %	S/\sqrt{B}
set1	73.6	100	5875.	100	99.7	100	89.1	100	0.95
Wrec.	73.6	100	498.8	8.5	5.38	5.4	19.4	21.8	3.22
Z'rec.	68.8	93.4	10.58	12.7	0	0.8	0.0667	2.2	21.1
Peak	46.3	66.0	2.879	7.1	0	8.7	0.00952	10.1	27.6

(Events for $\mathscr{L}=100$ fb $^{-1}$, $M_{oldsymbol{
u}_h}=500$ GeV)

Z' Discovery potentials in di-muons

Significance contour levels plotted against g'_1 and $M_{Z'}$

LHC:
$$L = 100 \text{ fb}^{-1} (\sqrt{s_{pp}} = 14 \text{ TeV})$$

 $M_{Z'} \geq 3 \text{ TeV}$

∃ >

Z' Discovery potentials in di-muons $\sigma(e^+e^- \rightarrow \gamma, Z, Z' \rightarrow \mu^+\mu^-)$ plotted against $M_{Z'}$, for $\sqrt{s_{e^+e^-}} = 1$ TeV ($M_{\mu\mu} > 200$ GeV)

 $\leftarrow 1\%$ deviation from the SM hypothesis

g'_1	$M_{Z'}$ (TeV)				
	LHC	LC ($\sqrt{s} = 1$ TeV)			
	3σ observation	1% level			
0.05	3.4	2.2			
0.1	4.1	3.8			
0.2	4.7	7.5			

Table: maximum $M_{Z^{\prime}}$ value accessible for selected g_1^{\prime} values

(4) (3) (4) (4) (4)

(d)