Determinations of α_s and tests of analytic hadronisation models using e^+e^- annihilation data.

S. Bethke, O. Biebel, S. Kluth, C. Pahl^{*}, J. Schieck and the JADE Collaboration

- JADE experiment
- Event shape distributions and moments
- Analysis of moments from JADE and OPAL using analytic hadronisation models (arXiv:0810.1389)
- Measurement of α_{s} from JADE distributions using new NNLO calculations (arXiv:0904.0786)
- Conclusion and outlook

July 16-22, 2009

•QCD effects stronger at low Q

- •QCD effects stronger at low Q
- •Old data saved from tapes, printouts.
- •Analysis and detector simulation software reactivated

July 16-22, 2009

•New Monte Carlos, new calculations

- •QCD effects stronger at low Q
- •Old data saved from tapes, printouts.
- •Analysis and detector simulation software reactivated

July 16-22, 2009

•New Monte Carlos, new calculations

Event shape variables y

- Thrust 1-T
- C-parameter
- Total Jet Boadening
 B_T

(Two-hemisphere variables)

- Wide Jet Broadening B_w
- Durham two-jet flip parameter y^D₂₃
- Heavy Jet Mass M_H

(One-hemisphere variables)

Distributions and moments

July 16-22, 2009

- (y^m), m=1...5 measured by JADE and OPAL
- Hadronisation correction by analytical "non perturbative" power correction models
- Perturbative predictions:
 Next to Leading Order,

$$\langle y^n \rangle = A_n \alpha_s(Q^2) + B_n \alpha_s^2(Q^2)$$

Fits to moments of Thrust on hadron level

• Dispersive model (Dokshitzer et al.): $d\sigma_{had.} - d\sigma_{pt.} (\gamma - 2 + P(\alpha))$

 $\frac{d\sigma_{had.}}{dy} = \frac{d\sigma_{pt.}}{dy} (y - a_y * P(\alpha_0))$

Deficiencies of the NLO predictions lead to non universalities of the fit parameters:

- Significant rise of α_S(M_Z°)
 with moment order n for twohemisphere moments
- higher α_0 for one-hemisphere moments

Dispersive model (Dokshitzer et al.): $d\sigma_{had.} = d\sigma_{pt.} (\gamma - 2 + R(\alpha))$

 $\frac{d\sigma_{had.}}{dy} = \frac{d\sigma_{pt.}}{dy} (y - a_y * P(\alpha_0))$

Deficiencies of the NLO predictions lead to non universalities of the fit parameters:

- Significant rise of α_S(M_Z°)
 with moment order n for twohemisphere moments
- higher α_0 for one-hemisphere moments
- Shape Function (Korchemsky)
- Single dressed gluon approximation (Gardi et al.): α_S(M_Z)=0.1172±0.0036

July 16-22, 2009

Measuring α_s : New NNLO calculations

- Predictions: Next to Next to Leading Order O(α_s³) (finished 2008 after 25 years) + Next to Leading Logarithmic Approximation
- Hadronisation correction by Monte Carlo models
- More complete than NLO analyses: Data described well over virtually all phase space

Measuring α_s : New NNLO calculations

 $\alpha_{S}(m_{Z^{\circ}})$ results

- More complete than NLO+NLLA analyses:
 - renormalisation scale uncertainty reduced
 - scatter from different variables reduced
- Result from JADE, NNLO+NLLA:

 $\alpha_{S}(M_{Z^{\circ}})=0.1172\pm0.0051$

4% precision, among the best measurements

Errors: stat. / exp.+had.+scale

Measuring α_s : New NNLO calculations

Running $\alpha_{S}(Q)$ result

from event shape combination

Running of α_S confirmed strongly in the JADE range 14—44 GeV.

NNLO: $\alpha_{s}(m_{z^{\circ}})=0.1210\pm0.0061(tot.)$ NNLO+NLLA: $\alpha_{s}(m_{z^{\circ}})=0.1172\pm0.0051(tot.)$

Errors: stat. / exp.+had.+scale

July 16-22, 2009

Conclusion

- Running of $\alpha_S(Q)$ confirmed strongly in the JADE energy range
- $\alpha_{s}(m_{z^{\circ}})=0.1172\pm0.0051(tot.)$ from NNLO+NLLA at 14-44 GeV
- Event shape moments reveal shortcomings of the NLO calculations
- Outlook:
 - OPAL NNLO analysis in progress
 - Moments NNLO analysis would be interesting
 - Re-analyses of data taken at the JADE and OPAL experiment have huge potential
 - QCD precisely studied in e⁺e⁻ important for LHC

July 16-22, 2009