

KLOE Measurement of the $\sigma_{\pi\pi(\gamma)}$ cross section and the $\pi^+\pi^-$ contribution to the muon anomaly

Federico Nguyen INFN Roma TRE for the KLOE Collaboration Krakow - July, 17th 2009

- > Introduction: $DA\Phi NE$ and KLOE
- > Measurement of the $\sigma_{\pi\pi(\gamma)}$ using ISR events with γ at small angle
- > Determination of the $\pi^+\pi^-$ contribution to a_{μ}
- ➤ Comparisons with recent e⁺e⁻ experiments
- > Outlook: $\sigma_{\pi\pi(\gamma)}$ using ISR events with large angle γ
- Conclusions

$DA\Phi NE$ and KLOE

✓ e⁺ e⁻ collide at M_Φ: $\sqrt{s} \sim 1.019$ GeV ✓ angle btw the beams @ IP ~ 2 × 12.5 mrad ✓ residual momentum in LAB ~ 13 MeV 2001-05: ~ 2.5 fb⁻¹ at M_φ 2006: ~ 250 pb⁻¹ at $\sqrt{s}=1$ GeV + \sqrt{s} scan

Calorimeter, EmC: Pb/Scint. Fiber, 4880 PMTs 98% of solid angle

 $\sigma_E / E = 0.057 / \sqrt{E} (GeV)$ $\sigma_t = 57 \text{ ps} / \sqrt{E} (GeV) \oplus 50 \text{ ps}$ $\sigma_\perp = 1.3 \text{ cm}$

both detectors w/ trigger decision

Drift Chamber, DC: 4 m \emptyset × 3.3 m length 90% He, 10% *i*-C₄H₁₀ 12582 stereo sense wires

 $\sigma_p / p = 0.4\% \text{ for } \theta > 45^\circ$ $\sigma_{r\varphi} = 0.150 \text{ mm}, \sigma_z = 2 \text{ mm}$ $\sigma(m_{\pi\pi}) \sim 1 \text{ MeV}$

The cross section $\sigma_{e^+e^-\to\pi^+\pi^-}$ from ISR events

at a fixed \sqrt{s} , studying *Initial State Radiation* events, $\sigma_{e+e-\rightarrow \pi^+\pi^-}(s)$ is extracted

ISR only:
$$M_{\pi\pi}^{2} \frac{d\sigma_{e^{+}e^{-} \to \pi^{+}\pi^{-}\gamma}}{dM_{\pi\pi}^{2}} = \sigma_{e^{+}e^{-} \to \pi^{+}\pi^{-}}(M_{\pi\pi}^{2}) \cdot H(M_{\pi\pi}^{2}, \theta_{\min})$$

EVA + PHOKHARA MC Generator
(S. Binner, J.H. Kühn, K. Melnikov, PLB459,1999)
(H.Czyż, A.Grzelińska, J.H Kühn, G.Rodrigo, EPJC27,2003)

main advantage:

no point-to-point errors on beam energy and luminosity

1st KLOE publication (based on 140 pb⁻¹)

A. Aloisio et al., PLB606(2005)12 \rightarrow KLOE05

main requirement:

precise knowledge of ISR radiative corrections

$$\frac{d\sigma_{\pi\pi\gamma}}{dM_{\pi\pi}^2} = \frac{N^{obs} - N^{bkg}}{\Delta M_{\pi\pi}^2} \cdot \frac{1}{\varepsilon_{sel}} \cdot \frac{1}{L}$$

Selection of $\pi\pi\gamma$ events at small angle

- a) 2 tracks with 50° < θ_{track} < 130°
- b) small angle γ ($\theta_{\pi\pi} < 15^{\circ}$)

 \checkmark high statistics for ISR (~ θ^{-2}) ✓ low relative FSR contribution \checkmark suppressed $\phi \rightarrow \pi^+\pi^-\pi^0$ wrt the signal x 10² 1200 n. of events 1000 0.01 GeV² 800 600 400 200 $M_{\pi\pi^2}$ (GeV²) 0 0.4 0.5 0.7 0.8 0.9 0.3 0.6

kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$

PUBLISHED: PLB670(2009)285

Selection of $\pi\pi\gamma$ events: suppress background

 \mathbf{m}_{trk} , defined under the hypothesis of 2 equal mass particles and 1γ in the final state

17-07-2009

 π/e separation performed with suppress $e^+e^- \rightarrow e^+e^-\gamma$ particle ID based on the calorimeter

remnant $e^+e^- \rightarrow \mu^+\mu^-\gamma \& \phi \rightarrow \pi^+\pi^-\pi^0$ cut and estimated as a function of $M_{\pi\pi}^2$

Background estimates

Main backgrounds obtained from MC shapes fitted to data distribution in M_{Trk}

Data/MC corrections for the π track

Luminosity

KLOE measures L with Bhabha scattering

 $55^{\circ} < \theta < 125^{\circ}$ acollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) Eur.Phys.J.C47:589-596,2006

generator used for σ_{eff} BABAYAGA (Pavia group)

C. M.C. Calame et al., NPB758 (2006) 22

new version (BABAYAGA@NLO) gives much better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL 0.1 % th \oplus 0.3% exp = 0.3%		

Systematic uncertainties

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
M _{trk} cuts	0.2%
π /e ID and TCA	negligible
Tracking	0.3%
Hardware Trigger	0.1%
Acceptance ($\theta_{\pi\pi}$)	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
\sqrt{s} dependence of H	0.2%
$\text{Luminosity}(0.1_{\text{th}} \oplus 0.3_{\text{exp}})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6$ %

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

 $\sigma_{\!\pi\pi}\!,$ undressed from VP, inclusive for FSR as function of $(M_{_{\!\gamma\ast}})^2$

theoretical fractional error on $a_{\mu} = 0.6$ %

Present situation on a_{μ}

NEW: selection of ISR γ at large angle

✓ independent complementary analysis detection of 2 tracks and \checkmark threshold region $(2m_{\pi})^2$ accessible at least 1 γ (E > 50 MeV) γ_{ISR} photon detected (4-momentum constraints) YOKE \checkmark background from ϕ decays, $\phi \rightarrow \pi^+ \pi^- \pi^0$ S.C. COIL Cryost & $\phi \rightarrow f_0(980)\gamma \rightarrow \pi\pi\gamma$ suppressed using Barrel EM data taken at $\sqrt{s} = 1$ GeV, off the ϕ peak $50^{\circ} < \theta_{\pi,\gamma} < 130^{\circ}$ n. of events 20000 0.01 GeV² 15000 statistics: 233 pb⁻¹ 10000 650 000 Events 5000

 $M_{\pi\pi^{2}}$ (GeV²)

0.6

0.8

0

0.2

0.4

Federico Nguyen 17-07-2009 $7\,\mathrm{m}$

14

Control of backgrounds: A_{FB}

Conclusions

✓ we presented a new measurement of $\sigma_{\pi\pi(\gamma)}$ and of the $\pi^+\pi^-$ contribution to $a_{\mu}^{\pi\pi}$ in the range [0.35, 0.95] GeV² with 0.9% accuracy [PLB670 (2009) 285]

✓ this result is in good agreement with the CMD-2 and SND recent results, and it strengthens the difference between BNL measurement and SM prediction

 \checkmark an independent analysis with γ detected at large angle is very close to be finalized (selection cuts established and main corrections evaluated), preliminary data-MC comparison shows excellent agreement

✓ we plan to determine the $\pi^+\pi^-$ contribution to $a_{\mu}^{\pi\pi}$, from ratio of $\pi\pi\gamma$ to $\mu\mu\gamma$ events, that allows an independent check of the radiator function and cancellation of some systematic effects

Comparisons on F_{π}

good agreement below and on the ρ peak among different e^+e^- experiments

Trigger corrections

average value = 0.9987 ± 0.0002

the main source (hardware veto of cosmic rays) of inefficiency in the 2005 result has been removed

trigger efficiency: fractional error given by relative difference of 2 independent methods <u>from data</u> $\rightarrow 0.1\%$

18

Geometrical acceptance for the $\boldsymbol{\gamma}$

we study the impact of varying the 15° cut on $\theta_{\pi\pi}$ in slices of $M^2_{\pi\pi}$

the data/MC spectrum variation is linear as a function of the cut, so the excursion at ± 1 degree is taken as systematic error_____

K LOng Experiment: resolutions

Electron/pion identification

