

KLOE results on light meson properties

Biagio Di Micco Istituto Nazionale di Fisica Nucleare sez. Roma Tre

on the behalf of the KLOE collaboration

B. Di Micco KLOE results on light meson properties Krakow -

Krakow – 16 -22 July 2009

$DA\Phi NE$ and KLOE

Collected luminosity (2.5 fb⁻¹) High luminosity e⁺e⁻ collider

- $\sigma(e^+e^- \rightarrow \phi) \sim 3 \mu\beta$ $\sqrt{s=m(\phi)=1019.4MeV}$
- Independent e⁺e⁻ rings to reduce beam-beam interactions
- crossing angle: 25 mrad, $p_x(\phi) \sim 12.6$ MeV/c
- Bunch crossing every 2.7 ns
- injection during acquisition

The KLOE Detector

Detector scheme

 $\sigma_{v} = 1 \text{ mm}$ $\sigma_{r,\phi} = 200 \text{ }\mu\text{m}$

$\sigma_{pt} / p_t = 0.5\%$ $\sigma_z = 2 \text{ mm}$

Electromagnetic calorimeter

- 1 barrel + 2 end-caps
- 98% solid angle coverage
- Fine sampling Pb / Scintillating Fibers
- Hermetical coverage

- High efficiency for low energy photons
- two side PM read out, longitudinal position from arrival time

 $\sigma_{\rm E}/E = 5.7\%/\sqrt{E(GeV)}$ $\sigma_{\rm t} = 54 \text{ps}/\sqrt{E(GeV)} \oplus 140 \text{ ps}$

• ϕ decays to scalars, the a_0 parameters, the scalar structure and the instanton model;

♦ Search for $φ → (f_0 + a_0)γ → \overline{K}^0 K^0 γ → K_s K_s γ$

• Measurement of the $e^+e^- \rightarrow \omega \pi^0$ cross section and determination of the Br($\omega \rightarrow \pi^0 \gamma$)

• The determination of the η ' gluonium content;

• Measurement of the Br($\eta \rightarrow \pi + \pi - e^+ e^-(\gamma)$) and looking for unconventional CP violation in the decay.

Still open questions on the nature of the light scalars:

 $a_0 t_0 \sigma \kappa$ The natural answer (2 quarks states in ³ P configuration) cannot explain the inverted hierarchy. Increasing mass arrow ¹₀S ³₁S **K**⁰ **k***0 qq k⁰ η_0 nonets ĸ

Why scalars show an inverted mass spectrum respect to the pseudoscalar and vector partners?

Natural explanation in the 4q hypothesys $f_0^{\sigma} a_0^{\sigma} ssdd ssuu \sigma uudd$ Jaffe

Scalar couplings to pseudoscalars 2q versus 4q

Couplings compatible with a 2 quarks hypothesys with $f_0 = s \overline{s}$

4q cannot fit the						
small value of g _{aokk} .						

	KLOE	SU(3)				
		4 q	qq			
$(g_{aK+K-}/g_{a\eta\pi})^2$	0.6 - 0.7	1.2 – 1.7	0.4 q (u,d)			
(g _{f0K+K-} /g _{f0π+π-})	4.6 – 4.8	>>1	>>1 (f ₀ =ss)	1/4 (f ₀ =qq)		
$(g_{f_0K+K-}/g_{aK+K-})^2$	4 - 5	1	2 (f ₀ =ss)	1 (f₀=qq)		

Scalar couplings to pseudoscalars 2q versus 4q

very good agreement in the 4 quarks hypothesis

B. Di Micco KLOE results on light meson properties

Krakow – 16 -22 July 2009

Interference pattern between non-resonant $e^+e^- \rightarrow \omega \pi^0$ and ϕ decays:

The η,η ' mesons wave function can be decomposed in the quark mixing base as in the following (J. L. Rosner, Phys. Rev. D 27 (1983) 1101.).

$$|\eta'\rangle = X_{\eta'} |q \bar{q}\rangle + Y_{\eta'} |s \bar{s}\rangle + Z_{\eta'} |G\rangle \quad |\eta\rangle = \cos \psi_P |q \bar{q}\rangle - \sin \psi_P |s \bar{s}\rangle \quad |q \bar{q}\rangle = \frac{|u \bar{u}\rangle + |d \bar{d}\rangle}{\sqrt{2}}$$

$$X_{\eta'} = \sin \psi_P \cos \psi_G$$

$$Y_{\eta'} = \cos \psi_P \cos \psi_G$$

$$Z_{\eta'} = \sin \psi_G$$

The $\phi \rightarrow \eta, \eta' \gamma$ transition is modelled according a spin flip transition

Only quarks participate to the electromagnetic transition, gluonium is spectator. It appears in the η' decay amplitudes only through the normalisation to 1 ($Y_{\eta'} \sim \cos \psi_G$)

KLOE past fit

taken from a global fit without gluonium

A. Bramon, R. Escribano, M.D. Scadron Phys. Lett. B503 (2001) 271

Using KLOE measured branching ratio;

 $\frac{\Gamma(\eta' \to \omega \gamma)}{\Gamma(\omega \to \pi^0 \gamma)} = \frac{1}{3} \left(\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right)^3 \left[z_q \right]_{\eta'} + 2 \frac{m_s}{\bar{m}} \left[z_s \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\pi'}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\omega}} \right]_{\eta'} \left[z_{\eta'} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m_{\omega}} \right]_{\eta'} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m_{\omega}} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m_{\omega}} \right]_{\eta'} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m_{\omega}} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m_{\omega}} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m_{\omega}} \right]_{\eta'} = \frac{1}{2} \left[\frac{m_{\eta'}^2 - m_{\omega}^2 m_{\omega}}{m_{\omega}^2 - m_{\omega}^2 m$

KLOE [Phys. Lett. B648 (2007) 267] has fitted:

 $\frac{\Gamma(\eta' \to \rho \gamma)}{\Gamma(\omega \to \pi^0 \gamma)} = \frac{z_q^2}{\cos \psi_V} \cdot 3 \left(\frac{m_{\eta'}^2 - m_{\rho}^2 m_{\omega}}{m_{\omega}^2 - m_{\pi}^2 m_{\eta'}} \right)^3 X_{\eta'}^2$

$$R_{\phi} = \frac{Br(\phi \to \eta' \gamma)}{Br(\phi \to \eta \gamma)} = \cot^2 \psi_P \cdot \cos^2 \psi_G \left(1 - \frac{m}{\overline{m}} \frac{z_q}{z_s} \cdot \frac{\tan \psi_V}{\sin 2\psi_P} \right)^2 \cdot \left(\frac{p_{\eta'}}{p_{\eta}} \right)^3$$

 $R_{\phi} = (4.77 \pm 0.09 \pm 0.19) \times 10^{-3} \qquad \phi \rightarrow \eta' \gamma \qquad \begin{array}{l} \eta' \rightarrow \pi^{+} \pi^{-} \eta \ , \ \eta \rightarrow 3\pi^{0} \\ \eta' \rightarrow \pi^{0} \pi^{0} \eta \ , \ \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \\ \phi \rightarrow \eta \gamma \ , \ \eta \rightarrow 3\pi^{0} \end{array}$

and the ratio:
$$\frac{\Gamma(\eta' \to \gamma \gamma)}{\Gamma(\pi^0 \to \gamma \gamma)} = \frac{1}{9} \left(\frac{m_{\eta'}}{m_{\pi}}\right)^3 \left(5\frac{f_{\pi}}{f_q}X_{\eta'} + \sqrt{2}\frac{f_{\pi}}{f_s}Y_{\eta'}\right)^2 \quad \text{E. Kou, Phys. Rev. D}$$
63 (2001) 54027

KLOE new fit

New global fit with more free parameters: Z_N , Z_{NS} , ψ_V , m_s/m									
Other input	$(\underline{\rho} \to \pi^0 \gamma) \over (\underline{\rho} \to \pi^0 \gamma)$, $(\underline{\Gamma}(K^{*+} \to K^+ \gamma)) \over \Gamma(K^{*0} \to K^0 \gamma)$								
	R.Escribano, J. Nadal								
Parameter	KLOE published	KLOE New fit	K. New fit (no Ργγ)	JHEP 05 (2007) 6					
$Z^2_{\eta^\prime}$	0.14 ± 0.04	0.105 ± 0.037	$\boldsymbol{0.03 \pm 0.06}$	0.04 ± 0.09					
ψ_{P}	(39.7 ± 0.7)°	(40.7 ± 0.7)°	(41.6 ± 0.8)°	(41.4 ± 1.3)°					
Z_{NS}	0.91 ± 0.05	0.866 ± 0.025	$\boldsymbol{0.85 \pm 0.03}$	0.86 ± 0.03					
Z_S	0.89 ± 0.07	0.79 ± 0.05	$\boldsymbol{0.78 \pm 0.05}$	0.79 ± 0.05					
$\psi_{\rm V}$	3.2°	(3.15 ± 0.10)°	(3.16 ± 0.10)°	$(3.2 \pm 0.1)^{\circ}$					
m _s /m	1.24 ± 0.07	1.24 ± 0.07	$\textbf{1.24} \pm \textbf{0.07}$	$\textbf{1.24} \pm \textbf{0.07}$					
P(χ ²)	49%	17%	41%	38%					

Gluonium content @ ~3 σ level confirmed (Z $_{\eta'} = 0$: $\psi_P = (41.6 \pm 0.5)^\circ$, P(χ^2)=1%) $\eta' \rightarrow \gamma \gamma$ is the only measurement sensitive to the gluonium

USING PDG-08 and KLOE $\omega \rightarrow \pi^{0}\gamma$

Z_g can be interpreted as a mixing with a glue ball. The mass of this glue ball has been determined using KLOE fit [Hai-Yang Cheng, Phys. Rev. D79 (2009) 014024]

 $m_c = (1.41 \pm 0.1) \text{ GeV}$ The glue-ball is identified as η (1405)

Poorly measured (4 events CMD-2, 16 events CELSIUS-WASA)

 \clubsuit Br predicted by ChPT and VMD models (26 \div 36) $\cdot 10^{\text{-5}}$

 $\Rightarrow \eta$ structure using virtual photon

D. N. Gao, Mod. Phys. Lett. A17(2002) 1583

CP violation source not constrained by CKM measurements and neutron elecritrc dipole moment

asymmetry in the particle decay angle

Results: BR and A

PLB 675(2009) 283

First measurment of the CP asymmetry and attempt to constraint |G|.

New KLOE data on a₀ together with the old f₀ results nicely agree with the 4 quark hypothesis in the instanton model;

• First upper limit on $\phi \rightarrow (f_0 + a_0)\gamma \rightarrow K^0 K^0 \gamma \rightarrow K_s K_s \gamma$, sensitivity near the obsevation threshold;

• Refit of the η ' gluonium content confirms the 3σ KLOE claim, the main sensitive measurement has been identified with the $\eta' \rightarrow \gamma \gamma$;

• Precise measurement of the $\eta \rightarrow \pi + \pi - e^+ e^- (\gamma)$ branching ratio and first measurement of the CP violating asymmetry.

OUTLOOK: see next talk of P. Gauzzi