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The quintessential example: sine-Gordon

sine-Gordon theory is a two-dimensional QFT defined by the Lagrangian

S =

∫
d2x

{
1

2
∂µΦ∂µΦ +

µ2

β2
cos(βΦ)

}
Expanding cos(βΦ) for small β generates an infinite set of vertices for Φ, one
can develop perturbation theory...

There exist solitons (and anti-solitons).. classical solutions, quadratic
fluctuations...

But the soliton-soliton S-matrix has been found analytically for any β

S(θ) = − exp

{
2

∫ ∞
0

dk

k
sin (kθ)

sinh(p − 1)k

2 cosh k sinh pk

}
where p =

β2

8π − β2
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The quintessential example: sine-Gordon

How is it possible??

The sine-Gordon theory is an example of an integrable quantum field
theory

These theories posses additional higher spin/nonlocal conserved charges

As a consequence the S-matrix factorizes into 2→ 2 scatterings and obeys
Yang-Baxter Equation which allows to nonperturbatively find it exactly

All this works only in two dimensions! No generalization to four-dimensional
theories exists...

Two-dimensional integrable
QFT’s become relevant for
four-dimensional physics due
to the AdS/CFT correspon-
dence
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What we would like to understand...

QCD

Inherently difficult...

Running coupling

Mixture of perturbative and nonperturbative effects...

Traditional methods:

Lattice QCD (inherently Euclidean, ‘black box’)

Models of QCD vacuum

Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
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N = 4 Super-Yang-Mills theory

Lot of progress has been made in the understanding of N = 4 Super-Yang-Mills
theory...

N = 4 Super Yang-Mills (≡ ordinary Yang-Mills+4 adjoint fermions +6
adjoint scalars+ appropriate self-interactions)

This theory is
1 supersymmetric
2 conformal (scale-invariant even at the quantum level)

Bonus: There exists an efficient way of studying this theory at strong
coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory)
correspondence
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The AdS/CFT correspondence

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

strong coupling (semi-)classical strings
nonperturbative physics or supergravity

very difficult ‘easy’
weak coupling highly quantum regime

‘easy’ very difficult

New ways of looking at nonperturbative gauge theory physics...

Intricate links with General Relativity...
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Why is it interesting?

More theoretical perspective:

Fascinating as it relates two completely different theoretical constructions:
4D gauge theory and string theory in 10D

Use N = 4 SYM as a theoretical laboratory for studying nonperturbative
gauge theory physics

In this theory one can perform quite rigorous computations at strong coupling

The natural language of the AdS/CFT correspondence appropriate to strongly
coupled N = 4 SYM is quite new w.r.t. conventional gauge theory methods

Try to build some new physical intuitions within this new language

N = 4 SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories
D. Gross
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Why is it interesting?

More practical perspective:

Although its behaviour is quite different from QCD at T = 0 (no
confinement etc.), at nonzero temperature supersymmetry is automatically
broken, the theory is deconfined

Use the results on strong coupling properties of N = 4 plasma as a point of
reference for analyzing/describing QCD plasma

see talk by R. Peschanski in the Heavy-Ion session

see plenary talk by U. Wiedemann later today

Works directly in Minkowski signature

In particular many gauge-theoretical problems are translated into geometrical
General Relativity like questions which are tractable (even analytically)
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Methods at strong coupling

What degrees of freedom appear on the string side???

Vibrational modes of the string ≡ particles/fields in AdS5 × S5

Massless modes ≡ graviton+. . .

At strong coupling massive modes are very heavy −→ it is enough to restrict
oneself to dynamics of massless modes ≡ gravity

At weaker coupling massive string modes become important...

Is there hope for an exact solution at any coupling???
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How to describe strings in AdS5 × S5?

Consider a closed string in AdS5 × S5:

The embedding coordinates of the point (τ, σ) are quantum fields X µ(τ, σ)
on the worldsheet which has the geometry of a cylinder

String theory in AdS5 × S5 ≡ a specific two dimensional quantum field theory
defined on a cylinder (worldsheet QFT)

It turns out that this worldsheet QFT is integrable and one can expect to
solve this theory exactly for any coupling! (recall sine-Gordon...)
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Towards an exact solution for any coupling

What do we mean by ‘solve’?

Local operators
in gauge theory

←→ String states
in AdS5 × S5

Operator dimension

〈O(x)O(y)〉 =
const

|x − y |2∆
←→ Energy of the corresponding

string state

One has to find the energy levels of an integrable two-dimensional QFT...
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Example: Konishi anomalous dimension

Simplest nonprotected operator: the Konishi operator

tr Φ2
i ←→ tr Z 2X 2 + . . . ←→ tr ZD2Z + . . .

When computing anomalous dimensions from two point functions there are
two types of graphs:

and

The first class is contained in the so-called Asymptotic Bethe Ansatz of
Beisert and Staudacher

The second class are ‘wrapping interactions’ which start to appear at order
g 2L (these are not contained in the Asymptotic Bethe Ansatz)

Last year these wrapping graphs were computed at 4 loops by F.Fiamberti,
A.Santambrogio, C.Sieg and D.Zanon
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The final result for the wrapping part at 4 loops is

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

Compute the same 4-loop
anomalous dimension from
string theory
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The Konishi operator from string theory

[Bajnok,RJ]

The Konishi operator corresponds to a two particle state in the 2D
worldsheet QFT of the string in AdS5 × S5

The wrapping graphs contributing at 4-loops correspond to a single ‘virtual’
graph:

This corresponds to a simple expression

∆(4−loop)
w = −

∞∑
Q=1

∫ ∞
−∞

dq

2π
YQ(q)

where YQ(q) is a relatively simple rational function of q and Q
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The Konishi operator from string theory

The integral can be easily done by residues giving a remaining sum

∞∑
Q=1

{
− num(Q)

(9Q4 − 3Q2 + 1)4 (27Q6 − 27Q4 + 36Q2 + 16)
+

864

Q3
− 1440

Q5

}

where

num(Q) =7776Q(19683Q18 − 78732Q16 + 150903Q14 − 134865Q12+

+ 1458Q10 + 48357Q8 − 13311Q6 − 1053Q4 + 369Q2 − 10)

This can be summed up giving

∆wrapping E = (324 + 864ζ(3)− 1440ζ(5))g 8

which exactly agrees with the direct 4-loop perturbative computation of
[F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
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The Konishi operator from string theory

We extended the string computation to give the result up to 5 loops (no
gauge theoretical computation so far [Bajnok,Hegedus,RJ, Lukowski]

∆ = 4 + 12 g 2 − 48 g 4 + 336 g 6 + 96(−26 + 6 ζ(3)− 15 ζ(5)) g 8

−96(−158− 72 ζ(3) + 54 ζ(3)2 + 90 ζ(5)− 315 ζ(7)) g 10

This could be extended to twist two operators at 4 loops [Bajnok,RJ, Lukowski]

Nontrivial relations with BFKL and NLO BFKL equations...
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The Konishi operator from string theory

Recently several groups proposed (infinte) sets of coupled nonlinear integral
equations which should work for any coupling

[Arutyunov,Frolov],[Bombardelli,Fioravanti,Tateo],[Gromov,Kazakov,Vieira]

[Gromov,Kazakov,Vieira] proposed concrete equations for the dimension of
the Konishi operator for any coupling

Still some issues to understand - source terms; possibility of reducing the
number of equations to a finite number

Goal: (within reach) – calculate anomalous dimensions for any coupling!!
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Outlook

The agreement of the Konishi computation with the 4-loop weak coupling
perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!

The result came from a single diagram – in contrast to direct perturbative
computations in gauge theory which are much more complex

This suggests that one can use string theory methods of AdS/CFT as an
efficient calculational tool also at weak coupling

The AdS/CFT correspondence allows to use methods of exactly solvable
integrable two-dimensional QFT’s to study the four-dimensional
supersymmetric N = 4 gauge theory

We may be very close to the complete solution for the spectrum of the theory
(≡ anomalous dimensions at any coupling)
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