Nonperturbative Field Theory

Romuald A. Janik

Jagiellonian University
Kraków

2009 Europhysics Conference on High Energy Physics
22 July 2009
1. Solving (nonperturbatively) QFT's
 - The quintessential example: sine-Gordon
 - QCD???
 - $\mathcal{N} = 4$ Super-Yang-Mills theory

2. The AdS/CFT correspondence and $\mathcal{N} = 4$ SYM

3. Why is it interesting?

4. Methods at strong coupling

5. Towards an exact solution for any coupling

6. Example: Konishi anomalous dimension

7. Outlook
The quintessential example: sine-Gordon

- sine-Gordon theory is a **two-dimensional** QFT defined by the Lagrangian

\[S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\} \]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons)... classical solutions, quadratic fluctuations...

- \textit{But} the soliton-soliton S-matrix has been found analytically \textbf{for any} \(\beta \)

\[S(\theta) = - \exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin (k \theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\} \]

where

\[p = \frac{\beta^2}{8\pi - \beta^2} \]
The quintessential example: sine-Gordon

- sine-Gordon theory is a **two-dimensional** QFT defined by the Lagrangian

 \[S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\} \]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons)... classical solutions, quadratic fluctuations...

- *But* the soliton-soliton S-matrix has been found analytically for any \(\beta \)

 \[S(\theta) = - \exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin (k \theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\} \]

 where

 \[p = \frac{\beta^2}{8\pi - \beta^2} \]
The quintessential example: sine-Gordon

- sine-Gordon theory is a **two-dimensional** QFT defined by the Lagrangian

\[
S = \int d^2x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\}
\]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons)... classical solutions, quadratic fluctuations...

- *But* the soliton-soliton S-matrix has been found analytically for any \(\beta \)

\[
S(\theta) = -\exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin (k\theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\}
\]

where

\[
p = \frac{\beta^2}{8\pi - \beta^2}
\]
The quintessential example: sine-Gordon

- sine-Gordon theory is a two-dimensional QFT defined by the Lagrangian

\[S = \int d^2x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\} \]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons). Classical solutions, quadratic fluctuations...

- But the soliton-soliton S-matrix has been found analytically for any \(\beta \)

\[S(\theta) = -\exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin(k\theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\} \]

where

\[p = \frac{\beta^2}{8\pi - \beta^2} \]
The quintessential example: sine-Gordon

- sine-Gordon theory is a two-dimensional QFT defined by the Lagrangian

\[S = \int d^2x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\} \]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons)... classical solutions, quadratic fluctuations...

- But the soliton-soliton S-matrix has been found analytically for any \(\beta \)

\[S(\theta) = -\exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin (k\theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\} \]

where

\[p = \frac{\beta^2}{8\pi - \beta^2} \]
The quintessential example: sine-Gordon

- sine-Gordon theory is a two-dimensional QFT defined by the Lagrangian

\[
S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\}
\]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons). Classical solutions, quadratic fluctuations...

- But the soliton-soliton S-matrix has been found analytically for any \(\beta \)

\[
S(\theta) = - \exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin (k\theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\}
\]

where

\[
p = \frac{\beta^2}{8\pi - \beta^2}
\]
The quintessential example: sine-Gordon

- sine-Gordon theory is a **two-dimensional** QFT defined by the Lagrangian

\[
S = \int d^2x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\}
\]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons) classical solutions, quadratic fluctuations...

- **But** the soliton-soliton S-matrix has been found analytically for any \(\beta \)

\[
S(\theta) = -\exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin(k\theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\}
\]

where

\[
p = \frac{\beta^2}{8\pi - \beta^2}
\]
The quintessential example: sine-Gordon

- sine-Gordon theory is a two-dimensional QFT defined by the Lagrangian

\[S = \int d^2x \left\{ \frac{1}{2} \partial_\mu \Phi \partial^\mu \Phi + \frac{\mu^2}{\beta^2} \cos(\beta \Phi) \right\} \]

- Expanding \(\cos(\beta \Phi) \) for small \(\beta \) generates an infinite set of vertices for \(\Phi \), one can develop perturbation theory...

- There exist solitons (and anti-solitons). Classical solutions, quadratic fluctuations...

- \textit{But} the soliton-soliton S-matrix has been found analytically for any \(\beta \)

\[S(\theta) = -\exp \left\{ 2 \int_0^\infty \frac{dk}{k} \sin (k\theta) \frac{\sinh(p - 1)k}{2 \cosh k \sinh pk} \right\} \]

where

\[p = \frac{\beta^2}{8\pi - \beta^2} \]
The quintessential example: sine-Gordon

- How is it possible??
- The sine-Gordon theory is an example of an **integrable quantum field theory**
- These theories possess additional higher spin/nonlocal conserved charges
- As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to *nonperturbatively* find it exactly
- All this works **only** in two dimensions! No generalization to four-dimensional theories exists...

Two-dimensional integrable QFT’s become relevant for four-dimensional physics due to the AdS/CFT correspondence
The quintessential example: sine-Gordon

- How is it possible??

- The sine-Gordon theory is an example of an **integrable quantum field theory**

- These theories possess additional higher spin/nonlocal conserved charges

- As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to *nonperturbatively* find it exactly

- All this works **only** in two dimensions! No generalization to four-dimensional theories exists...

Two-dimensional integrable QFT’s become relevant for four-dimensional physics due to the AdS/CFT correspondence
The quintessential example: sine-Gordon

- How is it possible??
- The sine-Gordon theory is an example of an **integrable quantum field theory**
- These theories posses additional higher spin/nonlocal conserved charges
- As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to *nonperturbatively* find it exactly
- All this works **only** in two dimensions! No generalization to four-dimensional theories exists...

Two-dimensional integrable QFT’s become relevant for four-dimensional physics due to the AdS/CFT correspondence
The quintessential example: sine-Gordon

- How is it possible??
- The sine-Gordon theory is an example of an **integrable quantum field theory**
- These theories posses additional higher spin/nonlocal conserved charges
 - As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to *nonperturbatively* find it exactly
- All this works **only** in two dimensions! No generalization to four-dimensional theories exists...

Two-dimensional integrable QFT’s become relevant for four-dimensional physics due to the AdS/CFT correspondence
The quintessential example: sine-Gordon

- How is it possible??
- The sine-Gordon theory is an example of an integrable quantum field theory
- These theories possess additional higher spin/nonlocal conserved charges
- As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to nonperturbatively find it exactly
- All this works only in two dimensions! No generalization to four-dimensional theories exists...

Two-dimensional integrable QFT's become relevant for four-dimensional physics due to the AdS/CFT correspondence
The quintessential example: sine-Gordon

- How is it possible??
- The sine-Gordon theory is an example of an **integrable quantum field theory**
- These theories possess additional higher spin/nonlocal conserved charges
- As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to *nonperturbatively* find it exactly
- All this works **only** in two dimensions! No generalization to four-dimensional theories exists...

Two-dimensional integrable QFT’s become relevant for four-dimensional physics due to the AdS/CFT correspondence
How is it possible??

The sine-Gordon theory is an example of an **integrable quantum field theory**

These theories possess additional higher spin/nonlocal conserved charges

As a consequence the S-matrix factorizes into $2 \rightarrow 2$ scatterings and obeys Yang-Baxter Equation which allows to *nonperturbatively* find it exactly

All this works **only** in two dimensions! No generalization to four-dimensional theories exists...

\[
\text{Two-dimensional integrable QFT's become relevant for four-dimensional physics due to the AdS/CFT correspondence}
\]
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
 - Running coupling
 - Mixture of perturbative and nonperturbative effects...

Traditional methods:

- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not *derivable* from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
 - Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:

- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:

- **Lattice QCD** (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:

- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:

- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
What we would like to understand...

QCD

- Inherently difficult...
- Running coupling
- Mixture of perturbative and nonperturbative effects...

Traditional methods:
- Lattice QCD (inherently Euclidean, ‘black box’)
- Models of QCD vacuum
- Effective models (not derivable from the fundamental theory)

Look at other, ‘simpler’ gauge theories for which other methods exist...
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)
- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)
- **Bonus:** There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)
- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)
- **Bonus:** There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)
- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)
- Bonus: There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)

- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)

- **Bonus:** There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
\(\mathcal{N} = 4 \) Super-Yang-Mills theory

Lot of progress has been made in the understanding of \(\mathcal{N} = 4 \) Super-Yang-Mills theory...

- \(\mathcal{N} = 4 \) Super Yang-Mills (\(\equiv \) ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)
- This theory is
 - supersymmetric
 - conformal (scale-invariant even at the quantum level)
- **Bonus:** There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
\(\mathcal{N} = 4 \) Super-Yang-Mills theory

Lot of progress has been made in the understanding of \(\mathcal{N} = 4 \) Super-Yang-Mills theory...

- \(\mathcal{N} = 4 \) Super Yang-Mills (≡ ordinary Yang-Mills+4 adjoint fermions +6 adjoint scalars+ appropriate self-interactions)
- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)
- Bonus: There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)
- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)
- Bonus: There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills+4 adjoint fermions +6 adjoint scalars+ appropriate self-interactions)

- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)

- Bonus: There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
Lot of progress has been made in the understanding of $\mathcal{N} = 4$ Super-Yang-Mills theory...

- $\mathcal{N} = 4$ Super Yang-Mills (\equiv ordinary Yang-Mills + 4 adjoint fermions + 6 adjoint scalars + appropriate self-interactions)

- This theory is
 1. supersymmetric
 2. conformal (scale-invariant even at the quantum level)

- Bonus: There exists an efficient way of studying this theory at strong coupling: the AdS/CFT (Anti-deSitter/Conformal Field Theory) correspondence
The AdS/CFT correspondence

\[\mathcal{N} = 4 \text{ Super Yang-Mills theory} \equiv \text{Superstrings on } AdS_5 \times S^5 \]

- strong coupling
 - nonperturbative physics
 - very difficult
- weak coupling
 - ‘easy’

- (semi-)classical strings
 - or supergravity
 - ‘easy’
- highly quantum regime
 - very difficult

- New ways of looking at nonperturbative gauge theory physics...
- Intricate links with General Relativity...
The AdS/CFT correspondence

<table>
<thead>
<tr>
<th>(\mathcal{N} = 4) Super Yang-Mills theory</th>
<th>(\equiv)</th>
<th>Superstrings on (AdS_5 \times S^5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strong coupling</td>
<td>(semi-)classical strings or supergravity</td>
<td></td>
</tr>
<tr>
<td>nonperturbative physics</td>
<td>‘easy’</td>
<td></td>
</tr>
<tr>
<td>very difficult</td>
<td>highly quantum regime</td>
<td></td>
</tr>
<tr>
<td>weak coupling</td>
<td>very difficult</td>
<td></td>
</tr>
<tr>
<td>‘easy’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- New ways of looking at nonperturbative gauge theory physics...
- Intricate links with General Relativity...
The AdS/CFT correspondence

$\mathcal{N} = 4$ Super Yang-Mills theory \equiv Superstrings on $AdS_5 \times S^5$

- strong coupling
- nonperturbative physics
- very difficult
- weak coupling
- ‘easy’

- (semi-)classical strings
- or supergravity
- ‘easy’
- highly quantum regime
- very difficult

- New ways of looking at nonperturbative gauge theory physics...
- Intricate links with General Relativity...
Why is it interesting?

More theoretical perspective:

- Fascinating as it relates two completely different theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
- The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
- Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories

D. Gross
More theoretical perspective:

- Fascinating as it relates two *completely different* theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
- The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
- Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories

D. Gross
Why is it interesting?

More theoretical perspective:

- Fascinating as it relates two completely different theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
 - In this theory one can perform quite rigorous computations at strong coupling
 - The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
 - Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories

D. Gross
Why is it interesting?

More theoretical perspective:

- Fascinating as it relates two *completely different* theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
 - The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
 - Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories

D. Gross
Why is it interesting?

More theoretical perspective:

- Fascinating as it relates two *completely different* theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
- The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
- Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories

D. Gross
Why is it interesting?

More theoretical perspective:

- Fascinating as it relates two \textit{completely different} theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
- The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
- Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the ‘harmonic oscillator’ of four dimensional gauge theories

D. Gross
Why is it interesting?

More theoretical perspective:

- Fascinating as it relates two completely different theoretical constructions: 4D gauge theory and string theory in 10D
- Use $\mathcal{N} = 4$ SYM as a theoretical laboratory for studying nonperturbative gauge theory physics
- In this theory one can perform quite rigorous computations at strong coupling
- The natural language of the AdS/CFT correspondence appropriate to strongly coupled $\mathcal{N} = 4$ SYM is quite new w.r.t. conventional gauge theory methods
- Try to build some new physical intuitions within this new language

$\mathcal{N} = 4$ SYM may be the `harmonic oscillator' of four dimensional gauge theories

D. Gross
Why is it interesting?

More practical perspective:

- Although its behaviour is quite different from QCD at $T = 0$ (no confinement etc.), at \textit{nonzero} temperature supersymmetry is automatically broken, the theory is deconfined.

- Use the results on strong coupling properties of $\mathcal{N} = 4$ plasma as a point of reference for analyzing/describing QCD plasma.

 see talk by R. Peschanski in the Heavy-Ion session
 see plenary talk by U. Wiedemann later today

- Works directly in Minkowski signature.

- In particular many gauge-theoretical problems are translated into geometrical General Relativity like questions which are tractable (even analytically).
Why is it interesting?

More practical perspective:

- Although its behaviour is quite different from QCD at $T = 0$ (no confinement etc.), at nonzero temperature supersymmetry is automatically broken, the theory is deconfined.

- Use the results on strong coupling properties of $\mathcal{N} = 4$ plasma as a point of reference for analyzing/describing QCD plasma.

 see talk by R. Peschanski in the Heavy-Ion session
 see plenary talk by U. Wiedemann later today

- Works directly in Minkowski signature.

- In particular many gauge-theoretical problems are translated into geometrical General Relativity like questions which are tractable (even analytically).
Why is it interesting?

More practical perspective:

- Although its behaviour is quite different from QCD at $T = 0$ (no confinement etc.), at *nonzero* temperature supersymmetry is automatically broken, the theory is deconfined.

- Use the results on strong coupling properties of $\mathcal{N} = 4$ plasma as a point of reference for analyzing/describing QCD plasma.

 see talk by R. Peschanski in the Heavy-Ion session

 see plenary talk by U. Wiedemann later today

- Works directly in Minkowski signature

- In particular many gauge-theoretical problems are translated into geometrical General Relativity like questions which are tractable (even analytically).
Why is it interesting?

More practical perspective:

- Although its behaviour is quite different from QCD at $T = 0$ (no confinement etc.), at nonzero temperature supersymmetry is automatically broken, the theory is deconfined.
- Use the results on strong coupling properties of $\mathcal{N} = 4$ plasma as a point of reference for analyzing/describing QCD plasma.

 see talk by R. Peschanski in the Heavy-Ion session
 see plenary talk by U. Wiedemann later today

- Works directly in Minkowski signature.
 - In particular many gauge-theoretical problems are translated into geometrical General Relativity like questions which are tractable (even analytically).
Why is it interesting?

More practical perspective:

- Although its behaviour is quite different from QCD at \(T = 0 \) (no confinement etc.), at \textit{nonzero} temperature supersymmetry is automatically broken, the theory is deconfined.

- Use the results on strong coupling properties of \(\mathcal{N} = 4 \) plasma as a point of reference for analyzing/describing QCD plasma. See talk by R. Peschanski in the Heavy-Ion session, see plenary talk by U. Wiedemann later today.

- Works directly in Minkowski signature.

- In particular many gauge-theoretical problems are translated into geometrical General Relativity like questions which are tractable (even analytically).
What degrees of freedom appear on the string side???

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton$+$...
- At strong coupling massive modes are very heavy \rightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
- At weaker coupling massive string modes become important...

*Is there hope for an exact solution at any coupling???
Methods at strong coupling

What degrees of freedom appear on the string side???

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton $+$...
- At strong coupling massive modes are very heavy \rightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
- At weaker coupling massive string modes become important...

Is there hope for an exact solution at any coupling???
What degrees of freedom appear on the string side???

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton$+$...
 - At strong coupling massive modes are very heavy \rightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
 - At weaker coupling massive string modes become important...

*Is there hope for an exact solution at any coupling???
Methods at strong coupling

What degrees of freedom appear on the string side???

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton$+\ldots$
- At strong coupling massive modes are very heavy \longrightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
- At weaker coupling massive string modes become important...

Is there hope for an exact solution at any coupling???
What degrees of freedom appear on the string side??

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton+...
- At strong coupling massive modes are very heavy \longrightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
- At weaker coupling massive string modes become important...

Is there hope for an exact solution at any coupling???
What degrees of freedom appear on the string side???

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton+\ldots
- At strong coupling massive modes are very heavy \longrightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
- At weaker coupling massive string modes become important...

Is there hope for an exact solution at any coupling???
What degrees of freedom appear on the string side???

- Vibrational modes of the string \equiv particles/fields in $AdS_5 \times S^5$
- Massless modes \equiv graviton$+$
- At strong coupling massive modes are very heavy \rightarrow it is enough to restrict oneself to dynamics of massless modes \equiv gravity
- At weaker coupling massive string modes become important...

*Is there hope for an exact solution at any coupling???
How to describe strings in $AdS_5 \times S^5$?

- Consider a closed string in $AdS_5 \times S^5$:

 - The embedding coordinates of the point (τ, σ) are quantum fields $X^\mu(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder.
 - String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT).
 - It turns out that this worldsheet QFT is integrable and one can expect to solve this theory exactly for any coupling! (recall sine-Gordon...)
How to describe strings in $AdS_5 \times S^5$?

Consider a closed string in $AdS_5 \times S^5$:

- The embedding coordinates of the point (τ, σ) are quantum fields $X^\mu(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder.
- String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT).
- It turns out that this worldsheet QFT is integrable and one can expect to solve this theory exactly for any coupling! (recall sine-Gordon...)
How to describe strings in $\text{AdS}_5 \times S^5$?

- Consider a closed string in $\text{AdS}_5 \times S^5$:

 - The embedding coordinates of the point (τ, σ) are *quantum fields* $X^\mu(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder.
 - String theory in $\text{AdS}_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT).
 - It turns out that this worldsheet QFT is *integrable* and one can expect to solve this theory *exactly* for any coupling! (recall sine-Gordon...
How to describe strings in $AdS_5 \times S^5$?

- Consider a closed string in $AdS_5 \times S^5$:

- The embedding coordinates of the point (τ, σ) are *quantum fields* $X^\mu(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder.

- String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT).

- It turns out that this worldsheet QFT is *integrable* and one can expect to solve this theory *exactly* for any coupling! (recall sine-Gordon...)
How to describe strings in $AdS_5 \times S^5$?

- Consider a closed string in $AdS_5 \times S^5$:

- The embedding coordinates of the point (τ, σ) are quantum fields $X^\mu(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder.

- String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT).

- It turns out that this worldsheet QFT is integrable and one can expect to solve this theory exactly for any coupling! (recall sine-Gordon...)
How to describe strings in $\text{AdS}_5 \times S^5$?

- Consider a closed string in $\text{AdS}_5 \times S^5$:

 ![Diagram](image)

 - The embedding coordinates of the point (τ, σ) are *quantum fields* $X^\mu(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder.
 - String theory in $\text{AdS}_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT).
 - It turns out that this worldsheet QFT is *integrable* and one can expect to solve this theory *exactly* for any coupling! (recall sine-Gordon...
Towards an exact solution for any coupling

What do we mean by ‘solve’?

Local operators in gauge theory \[\langle O(x)O(y) \rangle = \frac{\text{const}}{|x - y|^{2\Delta}}\] \[\leftrightarrow\] String states in \(AdS_5 \times S^5\)

Operator dimension

\[\langle O(x)O(y) \rangle = \frac{\text{const}}{|x - y|^{2\Delta}}\] \[\leftrightarrow\] Energy of the corresponding string state

One has to find the energy levels of an integrable two-dimensional QFT...

Romuald A. Janik (Krakow) Nonperturbative Field Theory 12 / 26
Towards an exact solution for any coupling

What do we mean by ‘solve’?

Local operators in gauge theory \[\langle O(x)O(y)\rangle = \frac{\text{const}}{|x - y|^{2\Delta}}\]

\[\text{String states in } AdS_5 \times S^5\]

Operator dimension

Energy of the corresponding string state

One has to find the energy levels of an integrable two-dimensional QFT...
What do we mean by ‘solve’?

Local operators in gauge theory \[\langle O(x)O(y) \rangle = \frac{\text{const}}{|x - y|^{2\Delta}}\] \[\leftarrow\rightarrow\] String states in \(AdS_5 \times S^5\)

Operator dimension

Energy of the corresponding string state

One has to find the energy levels of an integrable two-dimensional QFT...
Towards an exact solution for any coupling

What do we mean by ‘solve’?

Local operators in gauge theory \(\leftrightarrow\) String states in \(AdS_5 \times S^5\)

Operator dimension

\[
\langle O(x)O(y) \rangle = \frac{const}{|x - y|^{2\Delta}}
\]

\(\leftrightarrow\) Energy of the corresponding string state

One has to find the energy levels of an \textit{integrable} two-dimensional QFT...
Example: Konishi anomalous dimension

- **Simplest nonprotected operator: the Konishi operator**

\[
\text{tr } \Phi^2_i \quad \longleftrightarrow \quad \text{tr } Z^2 X^2 + \ldots \quad \longleftrightarrow \quad \text{tr } Z D^2 Z + \ldots
\]

- When computing anomalous dimensions from two point functions there are two types of graphs:

 and

- The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher
- The second class are ‘wrapping interactions’ which start to appear at order \(g^{2L} \) (these are not contained in the Asymptotic Bethe Ansatz)
- Last year these wrapping graphs were computed at 4 loops by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon
Example: Konishi anomalous dimension

- Simplest nonprotected operator: the Konishi operator
 \[\text{tr} \Phi_i^2 \leftrightarrow \text{tr} Z^2 X^2 + \ldots \leftrightarrow \text{tr} ZD^2 Z + \ldots \]

- When computing anomalous dimensions from two point functions there are two types of graphs:

 and

 The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher
 - The second class are ‘wrapping interactions’ which start to appear at order \(g^{2L} \) (these are not contained in the Asymptotic Bethe Ansatz)
 - Last year these wrapping graphs were computed at 4 loops by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon
Example: Konishi anomalous dimension

- Simplest nonprotected operator: the Konishi operator
 \[\text{tr } \Phi^2_i \leftrightarrow \text{tr } Z^2 X^2 + \ldots \leftrightarrow \text{tr } Z D^2 Z + \ldots \]

- When computing anomalous dimensions from two point functions there are two types of graphs:

 ![Graph 1](image1)
 ![Graph 2](image2)

 and

- The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher
- The second class are ‘wrapping interactions’ which start to appear at order \(g^{2L} \) (these are not contained in the Asymptotic Bethe Ansatz)
- Last year these wrapping graphs were computed at 4 loops by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon
Example: Konishi anomalous dimension

- Simplest nonprotected operator: the Konishi operator
 \[\text{tr } \Phi_i^2 \iff \text{tr } Z^2 X^2 + \ldots \iff \text{tr } Z D^2 Z + \ldots \]

- When computing anomalous dimensions from two point functions there are two types of graphs:

 ![Graph 1](image1.png)
 ![Graph 2](image2.png)

 and

- The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher

- The second class are ‘wrapping interactions’ which start to appear at order \(g^{2L} \) (these are not contained in the Asymptotic Bethe Ansatz)

- Last year these wrapping graphs were computed at 4 loops by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon
Example: Konishi anomalous dimension

- Simplest nonprotected operator: the Konishi operator

\[\text{tr } \Phi^2_i \longleftrightarrow \text{tr } Z^2 X^2 + \ldots \longleftrightarrow \text{tr } Z D^2 Z + \ldots \]

- When computing anomalous dimensions from two point functions there are two types of graphs:

 - The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher
 - The second class are ‘wrapping interactions’ which start to appear at order \(g^{2L} \) (these are not contained in the Asymptotic Bethe Ansatz)
 - Last year these wrapping graphs were computed at 4 loops by F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon
Simplest nonprotected operator: the Konishi operator

\[\text{tr } \Phi_i^2 \quad \longleftrightarrow \quad \text{tr } Z^2 X^2 + \ldots \quad \longleftrightarrow \quad \text{tr } ZD^2 Z + \ldots \]

When computing anomalous dimensions from two point functions there are two types of graphs:

- The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher.
- The second class are ‘wrapping interactions’ which start to appear at order \(g^{2L} \) (these are not contained in the Asymptotic Bethe Ansatz).
- Last year these wrapping graphs were computed at 4 loops by F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon.
Example: Konishi anomalous dimension

- Simplest nonprotected operator: the Konishi operator
 \[
 \text{tr } \Phi_i^2 \quad \leftrightarrow \quad \text{tr } Z^2 X^2 + \ldots \quad \leftrightarrow \quad \text{tr } ZD^2 Z + \ldots
 \]

- When computing anomalous dimensions from two point functions there are two types of graphs:

- The first class is contained in the so-called Asymptotic Bethe Ansatz of Beisert and Staudacher
- The second class are ‘wrapping interactions’ which start to appear at order g^{2L} (these are not contained in the Asymptotic Bethe Ansatz)
- Last year these wrapping graphs were computed at 4 loops by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon
\[W_{B1} = \quad W_{B2} = \quad W_{B3} = \]
\[W_{B4} = \quad W_{B5} = \quad W_{B6} = \]
\[W_{B7} = \quad W_{B8} = \quad W_{B9} = \]

Figure C.1: Wrapping diagrams with chiral structure \(\chi(1, 2, 3) \)
Figure C.2: Wrapping diagrams with chiral structure $\chi(1, 3, 2)$

<table>
<thead>
<tr>
<th>$W_{C1} \rightarrow \ast$</th>
<th>1</th>
<th>$W_{C4} \rightarrow$ finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_{C2} \rightarrow \ast$</td>
<td>2</td>
<td>$W_{C5} \rightarrow -W_{C3}$</td>
</tr>
<tr>
<td>$W_{C3} \rightarrow -W_{C5}$</td>
<td></td>
<td>$W_{C6} \rightarrow$ finite</td>
</tr>
</tbody>
</table>

Table C.2: Results of D-algebra for diagrams with structure $\chi(1, 3, 2)$

Figure C.3: Wrapping diagrams with chiral structure $\chi(2, 1, 3)$
Figure C.6: Wrapping diagrams with chiral structure $\chi(1)$ (continued)
\[I_1 = J_1 = \frac{1}{(4\pi)^8} \left(-\frac{1}{24\varepsilon^4} + \frac{1}{4\varepsilon^3} - \frac{19}{24\varepsilon^2} + \frac{5}{4\varepsilon} \right) \]

\[I_2 = \frac{1}{(4\pi)^8} \left(-\frac{1}{24\varepsilon^4} + \frac{1}{4\varepsilon^3} - \frac{19}{24\varepsilon^2} + \frac{1}{\varepsilon} \left(\frac{5}{4} - \zeta(3) \right) \right) \]

\[I_3 = J_5 = \frac{1}{(4\pi)^8} \left(-\frac{1}{12\varepsilon^4} + \frac{1}{3\varepsilon^3} - \frac{5}{12\varepsilon^2} - \frac{1}{\varepsilon} \left(\frac{1}{2} - \zeta(3) \right) \right) \]

\[I_4 = \frac{1}{(4\pi)^8} \left(-\frac{1}{6\varepsilon^4} + \frac{1}{3\varepsilon^3} + \frac{1}{3\varepsilon^2} - \frac{1}{\varepsilon} (1 - \zeta(3)) \right) \]

\[I_5 = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} 5\zeta(5) \]

\[I_6 = \frac{1}{(4\pi)^8} \left(\frac{1}{12\varepsilon^2} - \frac{7}{12\varepsilon} \right) \]

\[I_7 = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} (-\zeta(3)) \]

\[I_8 = \frac{1}{(4\pi)^8} \left(\frac{1}{4\varepsilon^2} - \frac{11}{12\varepsilon} \right) \]

\[I_9 = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} \left(\frac{1}{2} \zeta(3) - \frac{5}{2} \zeta(5) \right) \]

\[I_{10} = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} \left(-\frac{1}{2} - \frac{1}{2} \zeta(3) + \frac{5}{2} \zeta(5) \right) \]

\[I_{11} = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} \left(-\frac{1}{4} - \frac{3}{2} \zeta(3) + \frac{5}{2} \zeta(5) \right) \]

\[I_{12} = \frac{1}{(4\pi)^8} \frac{1}{\varepsilon} \left(-\frac{1}{8} - \frac{1}{4} \zeta(3) + \frac{5}{4} \zeta(5) \right) \]

Table C.8: Loop integrals for 4-loop wrapping diagrams. The arrows of the same type indicate contracted spacetime derivatives.
The final result for the wrapping part at 4 loops is

$\Delta_{\text{wrapping}} E = (324 + 864\zeta(3) - 1440\zeta(5))g^8$

Compute the same 4-loop anomalous dimension from string theory
The final result for the wrapping part at 4 loops is

$$\Delta_{\text{wrapping}} E = (324 + 864\zeta(3) - 1440\zeta(5))g^8$$

Compute the same 4-loop anomalous dimension from string theory
The Konishi operator corresponds to a two particle state in the 2D worldsheet QFT of the string in $AdS_5 \times S^5$.

The wrapping graphs contributing at 4-loops correspond to a single ‘virtual’ graph:

$$\Delta_w^{(4\text{-loop})} = - \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{dq}{2\pi} Y_Q(q)$$

where $Y_Q(q)$ is a relatively simple rational function of q and Q.

[Bajnok, RJ]
The Konishi operator from string theory

- The Konishi operator corresponds to a two particle state in the 2D worldsheet QFT of the string in $AdS_5 \times S^5$
- The wrapping graphs contributing at 4-loops correspond to a single ‘virtual’ graph:

This corresponds to a simple expression

$$\Delta^{(4-\text{loop})}_w = - \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{dq}{2\pi} Y_Q(q)$$

where $Y_Q(q)$ is a relatively simple rational function of q and Q
The Konishi operator corresponds to a two particle state in the 2D worldsheet QFT of the string in $AdS_5 \times S^5$.

The wrapping graphs contributing at 4-loops correspond to a single ‘virtual’ graph:

This corresponds to a simple expression

$$\Delta_{w}^{(4-\text{loop})} = - \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{dq}{2\pi} Y_{Q}(q)$$

where $Y_{Q}(q)$ is a relatively simple rational function of q and Q.

[Bajnok,RJ]
The Konishi operator from string theory

- The Konishi operator corresponds to a two particle state in the 2D worldsheet QFT of the string in $AdS_5 \times S^5$
- The wrapping graphs contributing at 4-loops correspond to a single ‘virtual’ graph:

This corresponds to a simple expression

$$\Delta^{(4\text{-}loop)}_{w} = - \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} \frac{dq}{2\pi} Y_Q(q)$$

where $Y_Q(q)$ is a relatively simple rational function of q and Q
The Konishi operator from string theory

- The integral can be easily done by residues giving a remaining sum

\[
\sum_{Q=1}^{\infty} \left\{ -\frac{\text{num}(Q)}{(9Q^4 - 3Q^2 + 1)^4 (27Q^6 - 27Q^4 + 36Q^2 + 16)} + \frac{864}{Q^3} - \frac{1440}{Q^5} \right\}
\]

where

\[
\text{num}(Q) = 7776Q(19683Q^{18} - 78732Q^{16} + 150903Q^{14} - 134865Q^{12} + \\
+ 1458Q^{10} + 48357Q^8 - 13311Q^6 - 1053Q^4 + 369Q^2 - 10)
\]

- This can be summed up giving

\[
\Delta_{\text{wrapping}} E = (324 + 864\zeta(3) - 1440\zeta(5))g^8
\]

which exactly agrees with the direct 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
The integral can be easily done by residues giving a remaining sum

\[
\sum_{Q=1}^{\infty} \left\{ \frac{-\text{num}(Q)}{(9Q^4 - 3Q^2 + 1)^4 (27Q^6 - 27Q^4 + 36Q^2 + 16)} + \frac{864}{Q^3} - \frac{1440}{Q^5} \right\}
\]

where

\[\text{num}(Q) = 7776Q(19683Q^{18} - 78732Q^{16} + 150903Q^{14} - 134865Q^{12} + \\
+ 1458Q^{10} + 48357Q^8 - 13311Q^6 - 1053Q^4 + 369Q^2 - 10)\]

This can be summed up giving

\[\Delta_{\text{wrapping}} E = (324 + 864\zeta(3) - 1440\zeta(5))g^8\]

which exactly agrees with the direct 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
The integral can be easily done by residues giving a remaining sum

\[\sum_{Q=1}^{\infty} \left\{ -\frac{\text{num}(Q)}{(9Q^4 - 3Q^2 + 1)^4 (27Q^6 - 27Q^4 + 36Q^2 + 16)} + \frac{864}{Q^3} - \frac{1440}{Q^5} \right\} \]

where

\[\text{num}(Q) = 7776Q(19683Q^{18} - 78732Q^{16} + 150903Q^{14} - 134865Q^{12} + 1458Q^{10} + 48357Q^8 - 13311Q^6 - 1053Q^4 + 369Q^2 - 10) \]

This can be summed up giving

\[\Delta_{\text{wrapping}} E = (324 + 864\zeta(3) - 1440\zeta(5))g^8 \]

which exactly agrees with the direct 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
The Konishi operator from string theory

- The integral can be easily done by residues giving a remaining sum

\[
\sum_{Q=1}^{\infty} \left\{ -\frac{\text{num}(Q)}{(9Q^4 - 3Q^2 + 1)^4} \frac{1}{(27Q^6 - 27Q^4 + 36Q^2 + 16)} + \frac{864}{Q^3} - \frac{1440}{Q^5} \right\}
\]

where

\[
\text{num}(Q) = 7776Q(19683Q^{18} - 78732Q^{16} + 150903Q^{14} - 134865Q^{12} + 1458Q^{10} + 48357Q^8 - 13311Q^6 - 1053Q^4 + 369Q^2 - 10)
\]

- This can be summed up giving

\[
\Delta_{\text{wrapping}} E = (324 + 864\zeta(3) - 1440\zeta(5))g^8
\]

which exactly agrees with the direct 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
The Konishi operator from string theory

- We extended the string computation to give the result up to 5 loops (no gauge theoretical computation so far) [Bajnok, Hegedus, RJ, Lukowski]

\[\Delta = 4 + 12 g^2 - 48 g^4 + 336 g^6 + 96(-26 + 6 \zeta(3) - 15 \zeta(5)) g^8
- 96(-158 - 72 \zeta(3) + 54 \zeta(3)^2 + 90 \zeta(5) - 315 \zeta(7)) g^{10} \]

- This could be extended to twist two operators at 4 loops [Bajnok, RJ, Lukowski]
- Nontrivial relations with BFKL and NLO BFKL equations...
We extended the string computation to give the result up to 5 loops (no
gauge theoretical computation so far) [Bajnok, Hegedus, RJ, Łukowski]

$$\Delta = 4 + 12 g^2 - 48 g^4 + 336 g^6 + 96(-26 + 6 \zeta(3) - 15 \zeta(5)) g^8$$
$$- 96(-158 - 72 \zeta(3) + 54 \zeta(3)^2 + 90 \zeta(5) - 315 \zeta(7)) g^{10}$$

This could be extended to twist two operators at 4 loops [Bajnok, RJ, Łukowski]
Nontrivial relations with BFKL and NLO BFKL equations...
We extended the string computation to give the result up to 5 loops (no
gauge theoretical computation so far) \[\Delta = 4 + 12 g^2 - 48 g^4 + 336 g^6 + 96(-26 + 6 \zeta(3) - 15 \zeta(5)) g^8 - 96(-158 - 72 \zeta(3) + 54 \zeta(3)^2 + 90 \zeta(5) - 315 \zeta(7)) g^{10} \]

This could be extended to twist two operators at 4 loops \[\text{[Bajnok,RJ,Łukowski]} \]

Nontrivial relations with BFKL and NLO BFKL equations...
We extended the string computation to give the result up to 5 loops (no
gauge theoretical computation so far) \[\Delta = 4 + 12 g^2 - 48 g^4 + 336 g^6 + 96(-26 + 6 \zeta(3) - 15 \zeta(5)) g^8 \\ -96(-158 - 72 \zeta(3) + 54 \zeta(3)^2 + 90 \zeta(5) - 315 \zeta(7)) g^{10} \]

This could be extended to twist two operators at 4 loops \[\text{[Bajnok, RJ, Łukowski]} \]

Nontrivial relations with BFKL and NLO BFKL equations...
We extended the string computation to give the result up to 5 loops (no gauge theoretical computation so far) [Bajnok, Hegedus, RJ, Łukowski]

\[\Delta = 4 + 12 g^2 - 48 g^4 + 336 g^6 + 96(-26 + 6 \zeta(3) - 15 \zeta(5)) g^8 \\
-96(-158 - 72 \zeta(3) + 54 \zeta(3)^2 + 90 \zeta(5) - 315 \zeta(7)) g^{10} \]

This could be extended to twist two operators at 4 loops [Bajnok, RJ, Łukowski]
Nontrivial relations with BFKL and NLO BFKL equations...
The Konishi operator from string theory

- Recently several groups proposed (infinite) sets of coupled nonlinear integral equations which should work for any coupling
 - [Arutyunov,Frolov], [Bombardelli,Fioravanti,Tateo], [Gromov,Kazakov,Vieira]
 - [Gromov,Kazakov,Vieira] proposed concrete equations for the dimension of the Konishi operator for any coupling

- Still some issues to understand - source terms; possibility of reducing the number of equations to a finite number
- **Goal:** *(within reach)* – calculate anomalous dimensions for any coupling!!
Recently several groups proposed (infinite) sets of coupled nonlinear integral equations which should work for any coupling

[Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo], [Gromov, Kazakov, Vieira]

[Gromov, Kazakov, Vieira] proposed concrete equations for the dimension of the Konishi operator for any coupling.

Still some issues to understand - source terms; possibility of reducing the number of equations to a finite number.

Goal: (within reach) – calculate anomalous dimensions for any coupling!!
Recently several groups proposed (infinite) sets of coupled nonlinear integral equations which should work for any coupling

[Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo], [Gromov, Kazakov, Vieira]

[Gromov, Kazakov, Vieira] proposed concrete equations for the dimension of the Konishi operator for any coupling

Still some issues to understand - source terms; possibility of reducing the number of equations to a finite number

Goal: (within reach) – calculate anomalous dimensions for any coupling!!
The Konishi operator from string theory

- Recently several groups proposed (infinite) sets of coupled nonlinear integral equations which should work for any coupling
 - [Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo], [Gromov, Kazakov, Vieira]

- [Gromov, Kazakov, Vieira] proposed concrete equations for the dimension of the Konishi operator for any coupling

- Still some issues to understand - source terms; possibility of reducing the number of equations to a finite number

- **Goal:** *(within reach)* – calculate anomalous dimensions for any coupling!!
The Konishi operator from string theory

- Recently several groups proposed (infinite) sets of coupled nonlinear integral equations which should work for \textit{any coupling}
 [Arutyunov,Frolov],[Bombardelli,Fioravanti,Tateo],[Gromov,Kazakov,Vieira]
- [Gromov,Kazakov,Vieira] proposed concrete equations for the dimension of the Konishi operator for any coupling

Still some issues to understand - source terms; possibility of reducing the number of equations to a finite number

\textbf{Goal: (within reach)} – calculate anomalous dimensions for any coupling!!
Recently several groups proposed (infinite) sets of coupled nonlinear integral equations which should work for any coupling

[Arutyunov, Frolov], [Bombardelli, Fioravanti, Tateo], [Gromov, Kazakov, Vieira]

[Gromov, Kazakov, Vieira] proposed concrete equations for the dimension of the Konishi operator for any coupling

Still some issues to understand - source terms; possibility of reducing the number of equations to a finite number

Goal: (within reach) – calculate anomalous dimensions for any coupling!!
The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT! The result came from a single diagram – in contrast to direct perturbative computations in gauge theory which are much more complex. This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling. The AdS/CFT correspondence allows to use methods of exactly solvable integrable two-dimensional QFT's to study the four-dimensional supersymmetric $\mathcal{N} = 4$ gauge theory. We may be very close to the complete solution for the spectrum of the theory (\equiv anomalous dimensions at any coupling).
The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!

The result came from a single diagram – in contrast to direct perturbative computations in gauge theory which are much more complex.

This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling.

The AdS/CFT correspondence allows to use methods of exactly solvable integrable two-dimensional QFT’s to study the four-dimensional supersymmetric $\mathcal{N} = 4$ gauge theory.

We may be very close to the complete solution for the spectrum of the theory (\equiv anomalous dimensions at any coupling).
The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!

The result came from a single diagram – in contrast to direct perturbative computations in gauge theory which are much more complex.

This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling.

The AdS/CFT correspondence allows to use methods of exactly solvable integrable two-dimensional QFT's to study the four-dimensional supersymmetric \(\mathcal{N} = 4 \) gauge theory.

We may be very close to the complete solution for the spectrum of the theory (≡ anomalous dimensions at any coupling).
The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT! The result came from a single diagram – in contrast to direct perturbative computations in gauge theory which are much more complex. This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling.

The AdS/CFT correspondence allows to use methods of exactly solvable integrable two-dimensional QFT's to study the four-dimensional supersymmetric $\mathcal{N} = 4$ gauge theory.

We may be very close to the complete solution for the spectrum of the theory (≡ anomalous dimensions at any coupling).
The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!

The result came from a single diagram – in contrast to direct perturbative computations in gauge theory which are much more complex.

This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling.

The AdS/CFT correspondence allows to use methods of exactly solvable integrable two-dimensional QFT’s to study the four-dimensional supersymmetric $\mathcal{N} = 4$ gauge theory.

We may be very close to the complete solution for the spectrum of the theory (≡ anomalous dimensions at any coupling).
Outlook

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The result came from a single diagram – in contrast to direct perturbative computations in gauge theory which are much more complex.
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling.
- The AdS/CFT correspondence allows to use methods of exactly solvable integrable two-dimensional QFT’s to study the four-dimensional supersymmetric $\mathcal{N} = 4$ gauge theory.
- We may be very close to the complete solution for the spectrum of the theory (≡ anomalous dimensions at any coupling).