Dark Matter from Lorentz invariance at the LHC

Giacomo Cacciapaglia IPN Lyon (France)

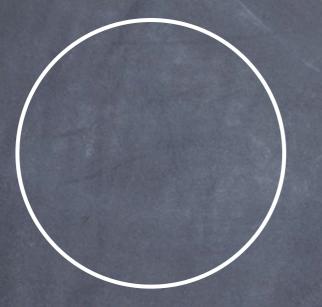
> In collaboration with: A.Deandrea, J.Llodra-Perez

17 July 2009 HEP 2009 Krakow

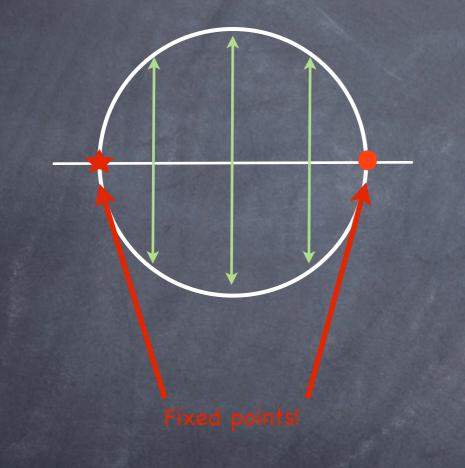
Extra dimensions are a versatile tool, they can address:

- Weak scale stability: Gauge-Higgs unification, warped space...
- Fermion mass hierarchy, neutrino masses
- Gauge symmetry breaking: Higgsless models, GUTs...
- strongly interacting conformal sector: composite Higgs, QCD, Higgsless/walking technicolor...
- Predicted by String Theories

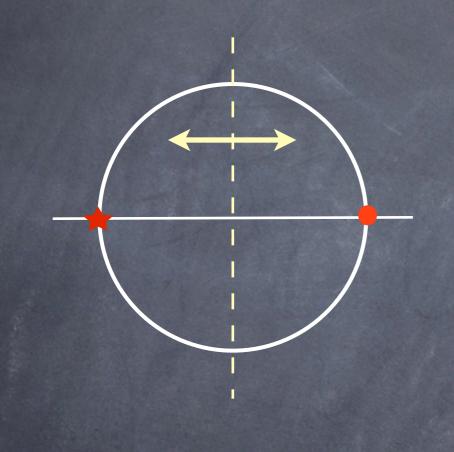
Is it there a natural Dark Matter candidate?



We start from, say, 1 compact
 XD...

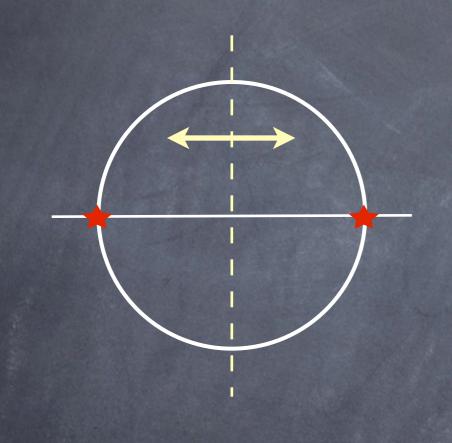


- We start from, say, 1 compact
 XD...
- We orbifold to obtain chiral fermions...



We start from, say, 1 compact
 XD...

- We orbifold to obtain chiral fermions...
- We impose a discrete parity: Kaluza-Klein parity!



- We start from, say, 1 compact
 XD...
- We orbifold to obtain chiral fermions...
- We impose a discrete parity: Kaluza-Klein parity!

The KK parity is added ad hoc, it requires to identify two DIFFERENT fixed points!

Orbifold without fixed points:

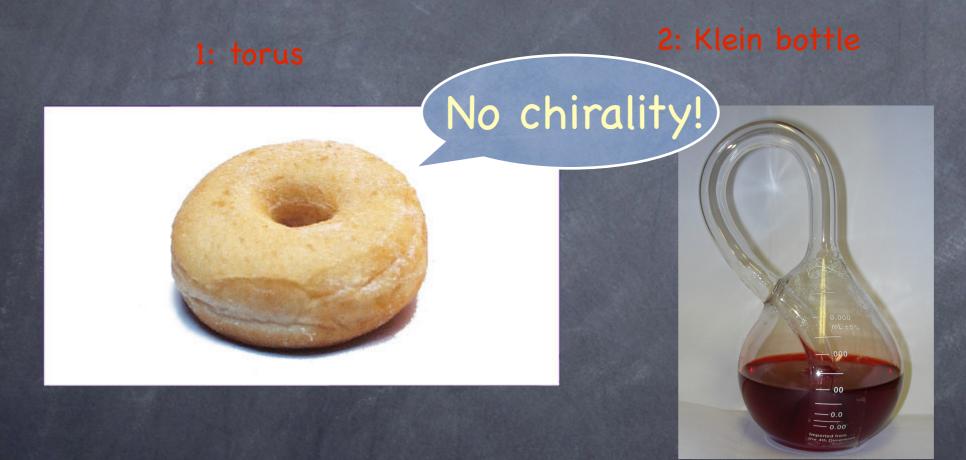
In 2D there are 17 orbifolds (discrete symmetries of the plane)...

of which 3 do not have fixed points/lines:

Orbifold without fixed points:

In 2D there are 17 orbifolds (discrete symmetries of the plane)...

of which 3 do not have fixed points/lines:



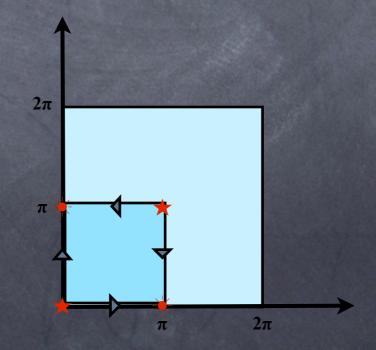
3: Real projective plane...

The real projective plane

$$\mathbf{pgg} = \langle r, g | r^2 = (g^2 r)^2 = \mathbf{1} \rangle$$

$$r: \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases} \qquad g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

Two singular points: $(0,\pi)\sim(\pi,0)$ $(0,0)\sim(\pi,\pi)$



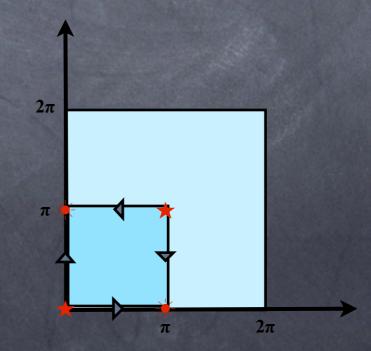
The real projective plane

$$\mathbf{pgg} = \langle r, g | r^2 = (g^2 r)^2 = \mathbf{1} \rangle$$

$$r: \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases} \qquad g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

KK parity is an exact symmetry of the space!

$$p_{KK}: \begin{cases} x_5 \sim x_5 + \pi \\ x_6 \sim x_6 + \pi \end{cases}$$



Gauge bosons

$$S_{\text{gauge}} = \int_{0}^{2\pi} dx_5 \, dx_6 \, \left\{ -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} - \xi (\partial_5 A_5 + \partial_6 A_6) \right)^2 \right\}$$

gauge fixing term

After solving the Equations of Motion, and imposing orbifold parities $[\mu \rightarrow (++), 5 \rightarrow (-+), 6 \rightarrow (--)]$ the spectrum is:

 $p_{KK} = (-1)^{k+l} \qquad m_{(k,l)} = \sqrt{k^2 + l^2}$

(k,l)	p_{KK}	$A^{(++)}_{\mu}$	$A_{5}^{(-+)}$	$A_6^{()}$
(0, 0)	+	$\frac{1}{2\pi}$		
(0, 2l)	+	$\frac{1}{\sqrt{2\pi}}\cos 2lx_6$		
(0, 2l - 1)	_		$\frac{1}{\sqrt{2}\pi}\sin(2l-1)x_{6}$	
(2k, 0)	+	$\frac{1}{\sqrt{2\pi}}\cos 2kx_5$		
(2k-1,0)	_			$rac{1}{\sqrt{2}\pi}\sin(2k-1)x_5$
$(k,l)_{ m k+l \; even}$	+	$rac{1}{\pi}\cos kx_5\cos lx_6$	$rac{l}{\pi\sqrt{k_{ m c}^2+l^2}}\sin kx_5\cos lx_6$	$-\frac{k}{-\sqrt{h^2+l^2}}\cos kx_5\sin lx_6$
$(k,l)_{ m k+l \ odd}$	—	$rac{1}{\pi}\sin kx_5\sin lx_6$	$rac{l}{\pi\sqrt{k^2+l^2}}\cos kx_5\sin lx_6$	$-rac{k}{\pi\sqrt{k^2+l^2}}\sin kx_5\cos lx_6$

Spectrum of the SM

$p_{KK} = (-1)^{k+l}$	(0,0) m = 0	(1,0) & (0,1) m = 1	(1,1) m = 1.41	(2,0) & (0,2) m = 2	(2,1) & (1,2) m = 2.24
Gauge bosons G, A, Z, W	\checkmark		\checkmark	\checkmark	\checkmark
Gauge scalars G, A, Z, W		\checkmark	\checkmark		\checkmark
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	√ (x2)	\checkmark	√ (x2)

Splitting: loops and Higgs VEV

Generic loop contributions can be written as:

 $\Pi = \Pi_T + p_g \Pi_G + p_r \Pi_R + p_g p_r \Pi_{G'}$

For gauge scalars:

Log divergence!

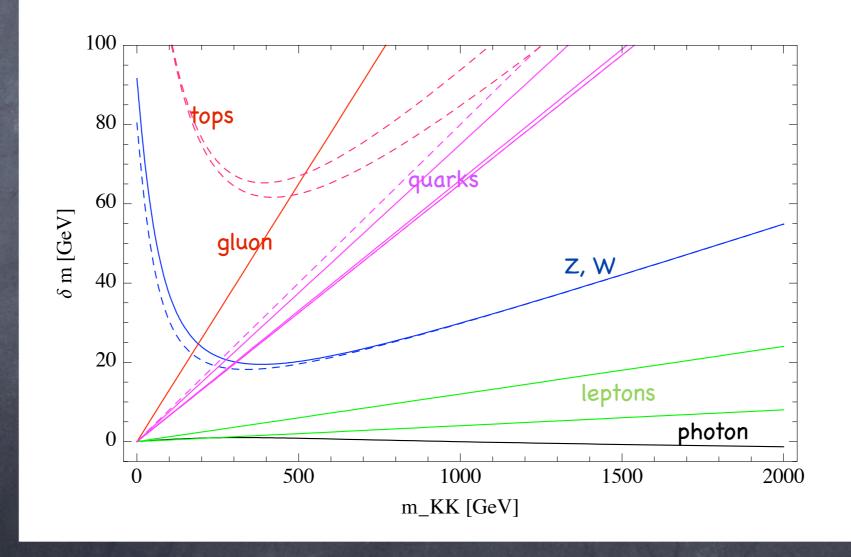
$$\delta m_B^2 = \frac{{g'}^2}{64\pi^4 R^2} \left[-79T_6 + 14\zeta(3) + \pi^2 n^2 L + \dots \right],$$

$$\delta m_W^2 = \frac{g^2}{64\pi^4 R^2} \left[-39T_6 + 70\zeta(3) + 17\pi^2 n^2 L + \dots \right]$$

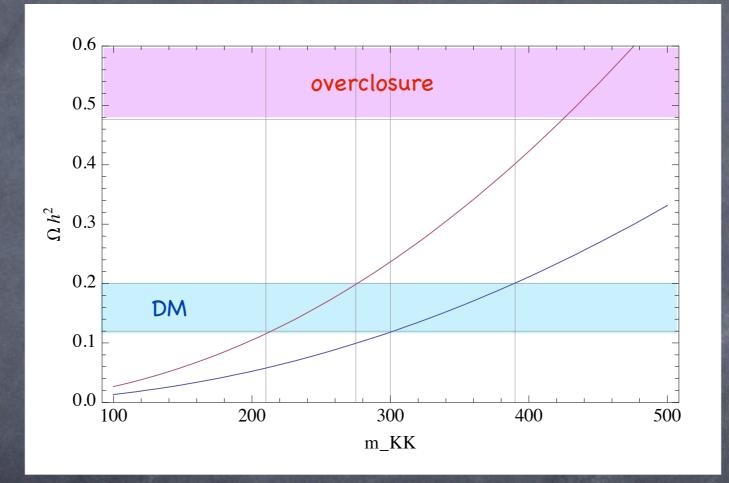
$$\delta m_G^2 = \frac{g_s^2}{64\pi^4 R^2} \left[-36T_6 + 84\zeta(3) + 24\pi^2 n^2 L + \dots \right]$$

Including the EWSB (Higgs VEV): neutral weak bosons

$$W_n^3 \quad B_n \) \cdot \left(\begin{array}{cc} \delta m_W^2 + m_W^2 & -\tan\theta_W m_W^2 \\ -\tan\theta_W m_W^2 & \delta m_B^2 + \tan^2\theta_W m_W^2 \end{array} \right) \cdot \left(\begin{array}{c} W_n^3 \\ B_n \end{array} \right)$$



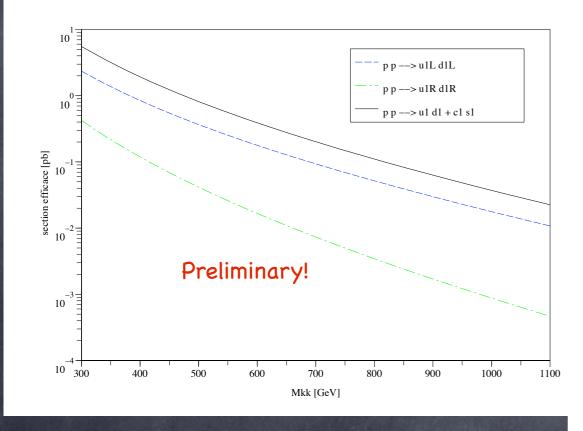
Relic abundance



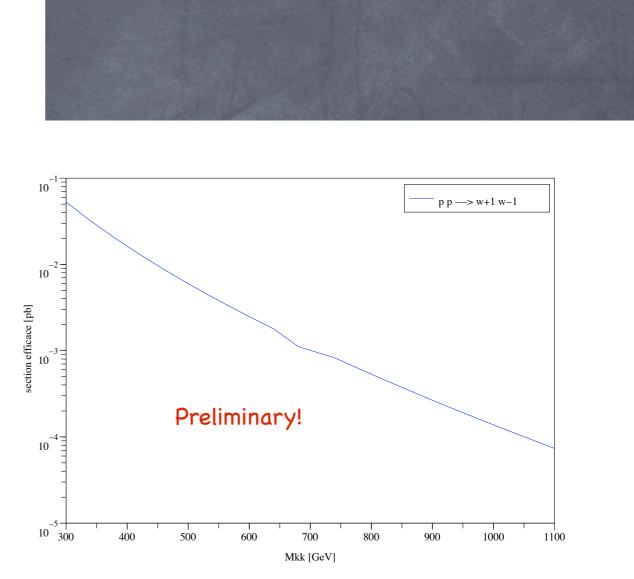
200 < mKK < 300 GeV

Phenomenology at the LHC

Production rates are large:



Thanks to Bogna Kubik–Deriaz



Phenomenology at the LHC

Small splittings make detection of lightest tier challenging:

	$m_X - m_{LLP}$	decay mode	final state
	in GeV		+ MET
$t^{(1,0)}$	70	$bW^{(1,0)}$	$bjj \ bl u$
$G^{(1,0)}$	40-70	$qq^{(1,0)}$	jj
$q^{(1,0)}$	20-40	$qq^{(1,0)} \ qA^{(1,0)} \ l u^{(1,0)}, u l^{(1,0)}$	j
$W^{(1,0)}$	20	$l u^{(1,0)}, u l^{(1,0)}$	$l\nu$
$Z^{(1,0)}$	20	$ll^{(1,0)}$	11
$l^{(1,0)}$	< 5	$lA^{(1,0)}$	l
$A^{(1,0)}$	0	-	

0

Phenomenology at the LHC

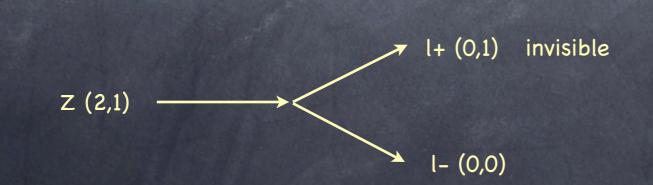
- Small splittings make detection of lightest tier challenging.
- Tiers (1,1) and (2,0) decay to SM particles:

0

0

nice resonances, but no MET!

- Tier (2,1) decays in (1,0) + (0,0): SM + MET!
- As (1,0) is invisible, app. charge non-conservation is possible!



``5D" limit

$p_{KK} = (-1)^{k+l}$	(0,0) m = 0	(1,0) & (0,() m = 1	(11) m = 1.41	(2,0) & (0,2) m = 2	(2.1) & (1.2) m = 2.24
Gauge bosons G, A, Z, W	\checkmark		\checkmark	\checkmark	\checkmark
Gauge scalars G, A, Z, W		\checkmark	\checkmark		\checkmark
Higgs boson(s)	\checkmark		\checkmark	\checkmark	\checkmark
Fermions	\checkmark	\checkmark	√ (x2)	\checkmark	√ (x2)

Conclusions and outlook

- KK parity can be a natural (no ad-hoc) symmetry relic of Lorentz invariance
- We studied the UNIQUE 6D geometry where this happens
- New Phenomenology from other models in the literature: light resonances, small splittings, 5D limit...
- We are implementing the model in FeynRules: easy interface with calcHep, Madgraph, FeynArt...
- We are computing precise relic abundance (with A.Arbey)
- The paper will be out soon!