

7

Wichmann @ EPS2009

SUSY

9

H C

Study of SUSY particles properties at the future International Linear Collider with the International Large Detector

- Short introduction to International Linear Collider (ILC) and International Large Detector (ILD)
- SUSY studies at ILC
- Beam induced backgrounds and their influence on physics events

International Linear Collider

- ILC International Linear Collider
 - next large high-energy project
 - linear e⁺e⁻ collider, up to CMS = 500 GeV (1000 GeV)
 - luminosity of 2.10³⁴/cm²/s
 - polarized beams: electrons 80%, positron 30% (up to 60%)
- build for detailed studies of Higgs, SUSY, and other new physics particles & interactions

 \mathbf{X}

Wichmann @

International Large Detector Concept

- Intended precision measurements at ILC require detectors of unprecedented performance huge challenge for detector and reconstruction methods
 - vertex resolution, tracking resoution, jet energy resolution better than in any existing detectors so far
- 'Particle Flow' proposed approach for reconstruction
 - reconstruct 4-momenta of ALL particles in an event
 - for each particle use most effective detector component

SUSY

2

エ て

Physics Studies @ ILD

- chosen reactions most challenging for the detector
 - allow to study detector performance & guide detector development
- full detector simulation Mokka (GEANT4)
- full reconstruction of over 30 million Monte Carlo events
- presented analyzes for CME of 500 GeV

- Letters of Intent (LoI) for ILC detector concepts recently submitted
- selection of ILD LoI physics studies is presented here

benchmark reactions for ILC

- physics studies
- detector design and optimization

Neutralino and Chargino Production

• mSugra "Point5" scenario:

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W \tilde{\chi}_1^0 W \tilde{\chi}_1^0$ $e^+e^- \rightarrow \tilde{\chi}_2^+ \tilde{\chi}_2^- \rightarrow Z \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$

- hadronic W and Z decays
 - final state 4 jets and missing energy
 - good W/Z separation essential •
 - tests jet energy resolution
 - tests particle flow based jet reconstruction

- cross section determined from di-jet mass distributions courtesy of J. List S²⁰⁰⁰ Events 1500 Total SM $\widetilde{\chi}^0_2 \widetilde{\chi}^0_2$ Other SUSY 80 40 60 100 120 140 Fitted boson mass / GeV
 - statistical errors depend on method
 - 0.64%-0.95% for chargino
 - 2,1%-2,9% for neutralino

エ て

SUSY

5

7

ନ୍ତ

Long-lived Neutralinos in GMSB

$$e^+e^-
ightarrow ilde{\chi}^0_1 ilde{\chi}^0_1$$
, $ilde{\chi}^0_1
ightarrow ilde{G} ilde{\chi}$

- energetic, non-pointing $\gamma s \rightarrow big$ challenge for electromagnetic calorimeter (ECAL)
- high granularity & resolution essential
- photons from ECAL clusters
 - efficiency: 84% for 1-200 GeV γ
 - angular resolution of photons:

Wichmann

ନ୍ତ

EPS2009

SUSY

9

H C

6

highly granular electromagnetic calorimeter \rightarrow excellent angular resolution of single photons

Long-lived Neutralinos in GMSB

- investigating capability of ECAL for different neutralino life times
 - 0.2 ns corresponding to ~10 cm decay distance
 - 2 ns corresponding to ~100 cm decay distance
- $\tilde{\chi}^0_1$ mass and life time estimated from γ energy and τ distributions

0.2 ns sample

• τ_{reco} =0.333±0.003 ns, τ_{MC} =0.480±0.009 ns

<u>2 ns sample</u>

• τ_{reco} =2.02±0.02 ns, τ_{MC} =1.9±0.02 ns

- neutralino lifetime measured to 1%
- neutralino mass determined with 2%

SUSY

9

HC

7

Wichmann

ନ୍ତ

SUSY Sps1a': Neutralino System

• mSugra SUSY with Sps1a' parameter set

 $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{0} \rightarrow \mu \,\mu \,\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}(\sigma = 4.1 \, fb)$ $\widetilde{\mu}_{L} \,\widetilde{\mu}_{L} \rightarrow \mu \,\mu \,\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}(\sigma = 54 \, fb)$

- signature: 2 energetic muons + missing E
 - excellent tracking performance (μ) and <u>hermeticity</u> of detector (E_{miss}) essential

- $\tilde{\chi}^0_1$ and μ_L masses measured from kinematic edges of muon momentum distribution in

 $\tilde{\mu}_L \tilde{\mu}_L \to \mu \, \mu \, \tilde{\chi}_1^0 \tilde{\chi}_1^0$

- ${ ilde \chi}^0_1$ mass up to 1.40%
- + μ_{L} mass up to 0.27%
- σ up to 2.5%

 muons identified with 95% efficiency using track, HCAL & muon chamber

H て

SUSY

Ň

ତ

K. Wichmann @ EPS2009

SUSY Sps1a': Stau Mass

$$e^+e^- \rightarrow \tilde{\tau} \,\tilde{\tau} \rightarrow \tilde{\chi}_1^0 \tau \,\tilde{\chi}_1^0 \tau$$

- missing energy and 2 low multiplicity tau-jets
- τ mass extracted from end-point of taujet energy spectrum (assuming $\tilde{\chi}_1^0$ mass)

- requirements:
 - precision tracking
 - good particle identification
 - hermetic detector
 - low machine background

- stat. error on end-point: 0.1 GeV
- accounting for $\tilde{\chi}_1^0$ mass uncertainty: 0.1 GeV \oplus 1.3 σ_{LPS}

SUSY

9

H て

SUSY Sps1a': Stau Polarization

- tau polarization, P_{τ} , provides sensitivity to many SUSY parameters
- cleanest measurement from $\tau \to \pi \nu$
 - slope of π^{\pm} energy spectrum proportional to P $_{_{\! au}}$
- fit to energy spectrum very sensible to spectrum shape
 - particle identification crucial
 - likelihood based on CAL info
 - background (21%) subtracted
 - beam background not taken into account for now

- estimated uncertainy 13-16%
 - depends on positron beam polarization

courtesy of P. Schade

SUSY

9

エ て

7

Wichmann

ନ୍ତ

Beam Induced Backgrounds

novel problem faced by linear colliders - beam induced backgrounds

machine induced backgrounds -> most important source of unwanted interactions

- beamstrahlung (photons) & e⁺e⁻ pair production
- photons strongly focused in forward direction exit through beam tube
- e⁺e⁻ pair production: direct and scattered particles in the detector
- 10⁵ pairs per bunch crossing, total energy ~1TeV, average few GeV per particle
- mostly affected vertex detector (VTX) and forward detectors
- electron-positron pairs are unavoidable backgrounds

Beam Backgrounds in Detector effect of 1/10th of bunch crossing

- Guinea Pig (GP) generator used to generate
 beam background + Mokka (full simulation)
- hit densities for VTX calculated from number of hits in detector layers for 1 bunch crossing (BX)

エ て

SUSY

5

7

Wichmann

୭

Beam Background in Detector

- in VTX ~100000 hits with beam backgrounds compared to ~400 without!
- ~3000 full tracks compared to ~60

• effort to simulating backgrounds and study its effects on reconstruction

- detector swamped by additional hits
 - mostly affected VTX and Forward
 - more reconstructed tracks, Flow Objects, shifted energies
- needed ways to reduce backgrounds
 - detector design & machine parameters chosen to minimize beam background impact
 - beam background must be treated on analysis level as well

9

エ て

Beam Background in Detector

- ways to reduce backgrounds
 - on the reconstruction level huge progress
 - between reconstruction & analysis
 - set of 2D cuts on track variables gives background rejection of 97% and track efficiency of 1.5%, for pT>0.5 GeV
 - on the analysis level example on next page

TPC hits for ttbar events overlayed with 150 BX of pair-background hits

TPC tracks

improved reconstruction

courtesy of S. Aplin

14

SUSY

9

H C

ア

Wichmann

ନ୍ତ

SUSY Sps1a': Staus Revisited

$$e^+e^-
ightarrow ilde{ au} \, ilde{ au}
ightarrow ilde{ au}_1^0 \, au \, ilde{ au}_1^0 \, au$$

- studied with beam background present
 - missing energy and 2 low multiplicity tau-jets
- set of cuts to remove background
 - particle energy E > 0.5 GeV
 - at least 1 hit in TPC (charged and neutral)
 - special DELPHI jet algorithm used to find taus

no difference in τ mass extracted with beam background and without

- requirements:
 - good tracking, good particle identification, hermetic detector
 - <u>low machine background (analyzed</u> in mass measurement only)
 - each physics event overlayed with 1 BX of Guinea Pig pairs
 charged particle / log10(E)

SUSY

9

エフ

15

- ILC- future linear collider offers unique chance for
- precise measurements of Higgs and new physics
- ILD Concept worked with wide set of benchmark reactions
 - to study physics
 - to work on detector design and optimization
- ILC faces novel problem of beam-related backgrounds
 - studies of pair background show methods to deal with it
- ILD Concept demonstrated in Letter of Intent that it is able to build detector sufficient to fulfill ambitious physics program

HC

SUSY at