

Evelina Marinova

Istituto Nazionale di Fisica Nucleare, Sezione di Perugia

on behalf of the NA48/2 collaboration

The 2009 Europhysics Conference on High Energy Physics

16-22 July 2009, Krakow, Poland

NA48 detector

- Magnetic spectrometer (4 DCHs):
 - 4 views : redundancy ⇒ high efficiency;
 - Δp/p = 1.0%⊕0.044%*p [GeV/c]
- > <u>Hodoscope</u>
 - fast trigger;
 - precise time measurement $(\sigma_t = 150 \text{ ps})$.
- Liquid Krypton EM calorimeter (LKr)
 - Quasi-homogeneous ionization chamber
 - 27 electromagnetic radiation lengths long active volume
 - Segmented transversally 13248 cells, 2x2 cm2
 - Energy resolution (E in GeV):

 $\frac{\sigma(E)}{E} = \frac{0.032}{\sqrt{E}} \oplus \frac{0.09}{E} \oplus 0.0042$

$${
m K}^{\pm}
ightarrow \pi^{\pm} \pi^{0} \gamma$$

M

<u>K[±] $\rightarrow \pi^{\pm} \pi^{0} \gamma$ – event reconstruction and signal region</u>

•NA48/2 measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ decay

1

0.4

0.42

0.44 0.46 0.48

In total:

More than 1 M reconstructed events

(the full number is used for the CPV measurements)

eAfter a cut on W (0.2; 0.9) and on E_{γ} (>5GeV), still 600 k events left for the measurement of the DE and INT fraction

0.52 0.54

Mk in GeV/c^2

0.5

<u>K[±] $\rightarrow \pi^{\pm} \pi^{0} \gamma$ – fitting techniques and fit results</u>

- Extended Maximum Likelihood Fit (main method)
- An algorithm assigns weights to MC W distributions of the 3 components to reproduce data

 $Data(i) = (1 - \alpha - \beta) \cdot IB(i) + \alpha \cdot DE(i) + \beta \cdot INT(i)$

- This algorithm relies on the very different W distributions
- Polynominal Fit (used as cross-check)

The ratio W(Data)/W(IBMC) is fitted
 with polynomial function: F = c · (1 + aW² + bW⁴)

Systematics	DE x 10 ⁻²	INT x 10 ⁻²
Acceptance	0.10	0.15
L1trigger	0.01	0.03
L2 trigger		0.30
Energy scale	0.09	0.21
Total	0.14	0.39

INT has never been observed before!

Final result (2003+2004) Frac(DE)_{T* π (0-80)MeV}= (3.32 ± 0.15_{stat} ± 0.14_{sys})*10⁻² Frac(INT)_{T* π (0-80)MeV}=(-2.35 ± 0.35_{stat} ± 0.39_{sys})*10⁻²

<u>K[±] $\rightarrow \pi^{\pm} \pi^{0} \gamma$ – comparison with previous experiments</u>

The BR(DE) assuming INT=0 (T_{π}^* = 55-90) MeV polynomial fit technique

- BR(DE) _{T*π(55-90)MeV}= (2.3±0.05_{stat}±0.077_{sys})·10⁻⁶
- PDG08_{avg} = $(4.3 \pm 0.7) \cdot 10^{-6}$
- Bad χ² probability of the polynomial fit: indicates that INT=0 is a wrong assumption

<u>K[±] $\rightarrow \pi^{\pm} \pi^{0} \gamma$ – first extraction of X_E X_M</u>

Under following approximations:

 $\phi = 0$ and $\cos(\delta_1^{1} - \delta_0^{2}) = \cos(6.5) \sim 1$

 X_E and X_M can be extracted using the formulae:

Magnetic and electric components $X_E = (-24 \pm 4_{stat} \pm 4_{sys}) \text{ GeV}^{-4}$ $X_M = (254 \pm 11_{stat} \pm 11_{sys}) \text{ GeV}^{-4}$

$$\begin{split} X_{E} &= \frac{Frac(INT)}{2 \cdot (0.105 \cdot m_{K}^{2} m_{\pi}^{2})} \\ X_{M} &= \sqrt{\frac{Frac(DE) - m_{K}^{4} m_{\pi}^{4} \mid X_{E} \mid^{2} 2.27 \cdot 10^{-2}}{2.27 \cdot 10^{-2} \cdot m_{K}^{4} m_{\pi}^{4}}} \end{split}$$

<u>K[±] $\rightarrow \pi^{\pm} \pi^{0} \gamma$ – CPV parameters measurements:</u> asymmetry and ϕ angle: compatible with 0

 $\mathbf{K}^{\pm}
ightarrow \pi^{\pm} \gamma^{*}
ightarrow \pi^{\pm} \mathbf{l}^{+} \mathbf{l}^{-}$

$K^{\pm} \rightarrow \pi^{\pm}l^{+}l^{-}$ - motivation and theory

$$d\Gamma_{\pi ee}/dz \sim \rho(z) \cdot |W(z)|^2$$

 $z=(M_{ee}/M_{K})^{2}$, $\rho(z)$ phase space factor

Form-factor models:

(1) polynomial: $W(z) = G_F M_K^2 \cdot f_0 \cdot (1 + \delta z)$ (2) ChPT O(p⁶): $W(z) = G_F M_K^2 \cdot (a_+, b_+, z) + W^{\pi\pi}(z)$ (3) ChPT, large-Nc QCD: $W(z) = W(w, \beta, z)$ (4) Mesonic ChPT: $W(z) = W(M_a, M_o, z)$

(2) D'Ambrosio et al. JHEP 8 (1998) 4(3) S. Friot et al. PLB 595 (2004) 301

suppressed FCNC processes

one-photon exchange

useful test for ChPT

(4) Dubnickova et al. hep-ph/0611175

 (f_0,δ) or (a_+,b_+) or (w,β) or (M_a,M_{ρ}) determine a model-dependent BR

- Parameters of models and BR in full kinematical range
- Model-independent BR (z > 0.08) in visible kinematical range

$K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}$ - signal and normalization samples

Selections of both channels based on very similar conditions: systematics (trigger, PID) in the BR ratio cancel particially

Mee > 140 MeV – cut for bg suppression

@Aditional γ in the normalisation channel

$K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}$ - form factor measurement

GOALS

Model-independent BR integrating dΓ/dz in the observable z region
 Model dependent BRs using fit parameters.

All models agree reasonably well with data

Results – comparison with previous experiments

Model independent measurement

 $BR_{mi} \times 10^7 (M_{ee} > 140 MeV/c^2) = 2.28 \pm 0.03_{stat} \pm 0.04_{syst} \pm 0.06_{ext} = 2.28 \pm 0.08$

Combined result of the 4 models

 $BR = (3.11 \pm 0.04_{stat} \pm 0.05_{syst} \pm 0.08_{ext} \pm 0.07_{model}) \times 10^{-7} = (3.11 \pm 0.12) \times 10^{-7}$

CP violating asymmetry (first measurement! correlated K+/K⁻ uncertainties excluded):

 $\Delta(K^{\pm}_{\pi ee}) = (BR^{+}-BR^{-}) / (BR^{+}+BR^{-}) = (-2.2\pm1.5_{stat}\pm0.6_{syst})\%$

		χ^2 / ndf	2.259/	3		
3.6		p0	3.001 ± 0.0867	6		
3.4	BR			Measurement	events	BR×10 ⁷
3.2				Bloch et al., PL 56 (1975) B201	(41)	2.70±0.50
3				Alliegro et al.[E777], PRL 68 (1992) 278	(500)	2.75±0.26
		1		Appel et al. [E865], PRL 83 (1999) 4482	(10000)	2.94±0.15
2.8)		NA48/2 final (2009)	(7253)	3.11±0.12
2.6				•Form factor measurements for Model	1, 2 and 3*	
2.4				in agreement with previous measureme	ents	
2.2 2	05 1 15 2		5 4 4 5 5	•Model 4 – never tested before •J.Prades, e-Print: arXiv:0707.1789 [he] its sign) $a_{+} = -(0.6 + 0.6 - 0.23)$, in agreement	p-ph], prec nt with our	licts (up to result

Conclusions

- Precise measurement of $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$
- Precise measurement of DE contribution and first measurement of INT term
- The values of X_M and X_E are extracted
- The BR(DE) assuming INT=0 (55-90) MeV gave bad χ^2 fit
- **CPV parameters measurements**
- Final result, paper in preparation
- Precise measurement of $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$
- Precision comparable with world's best;
- BR and form factor measurements in agreement with ChPT and other measurements;
- **•** First limit on CPV asymmetry.
- Paper published in PLB

• Precise measurement of $K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$

- **@** Four times larger sample than the existing world statistics has been collected
- Analysis is well advanced. Aim to bless preliminary results this year.

Polynomial fit

Frac(DE) = $(3.2 \pm 0.16)^{*10^{-2}}$ Frac(INT) = $(-2.20 \pm 0.4)^{*10^{-2}}$

The two results are in a very good agreement!

$$\frac{\partial \Gamma^{\pm}}{\partial W} = \frac{\partial \Gamma_{IB}^{\pm}}{\partial W} \left[1 + 2\cos\left(\pm\phi\right) + \delta_{1}^{t} - \delta_{0}^{2}\right) m_{\pi}^{2} m_{K}^{2} |X_{E}| W^{2} + m_{\pi}^{4} m_{K}^{4} (|X_{E}|^{2} + |X_{M}|^{2}) W^{4} \right]$$

$$\frac{\partial \Gamma}{\partial W} = \frac{\partial \Gamma(IB)}{\partial W} \left(1 + (X_{E}\cos\phi\cos\Delta_{0}^{t} \pm X_{E}\sin\phi\sin\Delta_{0}^{t}) \cdot W^{2} + cW^{4} \right)$$

$$\frac{\partial \Gamma}{\partial W} = \frac{d\Gamma(IB)}{dW} \left(1 + (a\pm e)W^{2} + cW^{4} \right) \qquad \frac{dAsym}{dW} = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}} = \frac{e \cdot W^{2}}{1 + a \cdot W^{2} + b \cdot W^{4}}$$

$$a = \frac{\cos\phi\cos(\Delta_{0}^{t})X_{E}}{\int INT / IB} = \frac{Frac(INT)}{0.105} = -0.247$$

$$e = \frac{\sin\phi\sin(\Delta_{0}^{t})X_{E}}{\int INT / IB} \Rightarrow Asym = e\int INT / IB$$

$$b = \frac{frac(DE)}{\int DE / IB} = \frac{0.032}{2.27 \cdot 10^{-2}} = 1.463$$

Extraction of the ϕ angle

 $\frac{\partial \Gamma^{\pm}}{\partial W} = \frac{\partial \Gamma_{IB}^{\pm}}{\partial W} \left[1 + 2\cos(\pm\phi + \delta_1^1 - \delta_0^2) m_\pi^2 m_K^2 | X_E | W^2 + m_\pi^4 m_K^4 (|X_E|^2 + |X_M|^2) W^4 \right]$

$$A_{N} = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}} \sim \frac{\Gamma^{+} - \Gamma^{-}}{2\Gamma_{IB}} = 2(I_{INT}/I_{IB})X_{E}m_{K}^{2}m_{\pi}^{2}sin(\phi)sin(\delta_{1}^{1} - \delta_{0}^{2})$$

$$sin(\phi) = \frac{A_{N}}{2(I_{INT}/I_{IB})X_{E}m_{K}^{2}m_{\pi}^{2}sin(\delta_{1}^{1} - \delta_{0}^{2})}$$

 $sin(\phi) 2003+2004$ $sin(\phi) = (-0.011 \pm 0.43) |sin(\phi)| < 0.56 CL 90\%$

ø

<u>K[±] \rightarrow π[±] π⁰ γ - CP violation parameters</u>

Asymmetry in the rates

$$_{N} = \frac{N_{+} - RN_{-}}{N_{+} + RN_{-}}$$

where $R=N(K^+)/N(K^-)=1.7998\pm0.0004$ (using K3 π decays)

The NA48/2 result: $A_N = (0.03 \pm 1_{stat} \pm 0.6_{sys}) \cdot 10^{-3}$; limit - $A_N < 1.5 \cdot 10^{-3}$ 90% C.L.

•If $\phi \neq 0$ then Γ (K⁺ $\rightarrow \pi^+\pi^0\gamma$) $\neq \Gamma$ (K⁻ $\rightarrow \pi^-\pi^0\gamma$): clear sign for CP violation!

A

NA48/2 result on $sin(\phi)$: $sin(\phi) = (-0.011 \pm 0.43)$, $|sin(\phi)| < 0.56$ CL 90%

Theoretical prediction (SM): Theoretical range 2.10⁻⁶ to 1.10⁻⁵ with 50< $E\gamma^*$ <170 MeV

Asymmetry in the W spectrum

$$\frac{dAsym}{dW} = \frac{e \cdot W^2}{1 - 0.247 \cdot W^2 + 1.463 \cdot W^4}$$

Asym = $e \int INT / IB = (-0.6 \pm 1.) \cdot 10^{-3}$

NA48/2 result: $A_{W} = (-0.6 \pm 1_{stat}) \cdot 10^{-3}$

CPV table of systematic

Effect	Value			
P_{K} distribution correction	3-10-4			
+ - Acceptance difference	< 4 · 10 ⁻⁵			
LVL1 trigger	3-10-4			
LVL2 trigger	4-10 ⁻⁴			
$\pi^+ \pi^-$ cross section difference	~ 4 . 10 ⁻⁵			
R max variation	3.5 - 10 ⁻⁴			
Total Systematic	6.1-10 -4			

$\underline{K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-} \text{-} \text{selection criteria}}$

BR (K[±] $\rightarrow \pi^{\pm}e^{+}e^{-}$) is measured normalizing to K[±] $\rightarrow \pi^{\pm}\pi^{0}{}_{D} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$

Common selection criteria

- 3-track vertex concistent in space and time
- E/p < 0.85 (π[±]), E/p > 0.95
- opposite sign electrons

Selection cuts: signal

• M_{ee} > 140 MeV kinematical suppression of the bg from the normalization channel

 Cut on kaon (π[±]e⁺e⁻) mass, total and transverse momentum Selection cuts: normalization ($K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$)

- Selection of good γ
- Cut on kaon $(\pi^{\pm}e^{\pm}e^{-\gamma})$ mass, total and transverse momentum

The use of a very similar channel cancels systematics (trigger, PID) in the BR ratio

• e⁺e⁻ pairs (conversions and Dalitz)

$$\frac{SS}{BG} = 1$$

$$\frac{SS}{SS} = \frac{1}{BG^{23}} = \frac{1}{2}$$

<u>K[±] \rightarrow $\pi^{\pm}e^{+}e^{-}$ -how to</u>

acceptance

$K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}$ - Final results on form factors, BR, asymmetry

BR _{mi} ×10 ⁷ (M _{ee} >140MeV/c ²)	2.26	±	$0.03_{stat} \pm$	0.03 _{syst}	±	0.06 _{ext}	=	2.26 ±	F	0.08
δ =	= 2.32	±	0.15 _{stat} ±	0.09 _{syst}			=	2.32 ±	<u>-</u>	0.18
f ₀ =	= 0.531	±	0.012 _{stat} ±	0.008 _{syst}	±	0.007 _{ext}	=	0.531 <u>+</u>	F	0.016
BR ₁ ×10 ⁷ =	= 3.05	±	0.04_{stat} ±	0.05 _{syst}	±	0.08 _{ext}	=	3.05 ±	F	0.10
a ₊ =	-0.578	±	0.012 _{stat} ±	0.008 _{syst}	±	0.007 _{ext}	=	-0.578 ±	F	0.016
b ₊ =	-0.779	±	0.053_{stat} ±	0.036 _{syst}	±	0.017 _{ext}	=	-0.779 <u>+</u>	F	0.066
BR ₂ ×10 ⁷ =	= 3.14	±	0.04_{stat} ±	0.05 _{syst}	±	0.08 _{ext}	=	3.14 ±	F	0.10
w =	= 0.057	±	0.005 _{stat} ±	0.004 _{syst}	±	0.001 _{ext}	=	0.057 ±	-	0.007
β =	= 3.45	±	0.24_{stat} ±	0.17 _{syst}	±	0.05 _{ext}	=	3.45 ±	F	0.30
BR ₃ ×10 ⁷ =	= 3.13	±	0.04_{stat} ±	0.05 _{syst}	±	0.08_{ext}	=	3.13 ±	E	0.10
M _a =	= 0.974	±	0.030 _{stat} ±	0.019 _{svst}	<u>+</u>	0.002 _{ext}	=	0.974 ±	<u>-</u>	0.035 GeV
Μ _ρ =	= 0.716	±	0.011 _{stat} ±	0.007 _{syst}	±	0.002 _{ext}	=	0.716 ±	F	0.014 GeV
BR ₄ ×10 ⁷ =	= 3.18	±	0.04 _{stat} ±	0.05 _{syst}	±	0.08 _{ext}	=	3.18 ±	F	0.10

Including uncertainty due to the model dependence:

 $BR = (3.11 \pm 0.04_{stat} \pm 0.05_{syst} \pm 0.08_{ext} \pm 0.07_{model}) \times 10^{-7} = (3.11 \pm 0.12) \times 10^{-7}$

CP violating asymmetry (first measurement! correlated K+/K- uncertainties excluded):

 $\Delta(K_{\pi ee}^{\pm}) = (BR^{+}-BR^{-}) / (BR^{+}+BR^{-}) = (-2.2\pm1.5_{stat}\pm0.6_{syst})\%$

<u>K[±] $\rightarrow\pi^{\pm}e^{+}e^{-:}$ Linear fit – comparison with previous</u> experiments

Measurement	Process	Result
Alliegro et al.[E777], PRL 68 (1992) 278	K⁺→π⁺e⁺e⁻	1.31±0.48
Appel et al. [E865], PRL 83 (1999) 4482	K⁺→π⁺e⁺e⁻	2.14±0.20
Ma et al. [E865], PRL 84 (2000) 2580	K⁺→π⁺μ⁺μ⁻	2.45 ^{+1.30} _0.95
NA48/2 final (2009)	K±→π±e⁺e⁻	2.32±0.18

$K^{\pm} \rightarrow \pi^{\pm} \mu^{+} \mu^{-}$ - background estimation

