

1 of 18

Bari Osmanov University of Florida

MiniBooNE experiment: recent results and future plans

on behalf of MíníBooNE collaboration

EPS HEP 2009 16-22 July, Krakow, Poland

Outline

- Booster neutrino beamline
- MiniBooNE detector
- Analysis overview
- Recent results and future plans
- Conclusion

EPS HEP 2009 16-22 July, Krakow, Poland

Booster neutrino beamline

- 8 GeV protons on Be target
- magnetic focusing horn to bend secondary particles towards the detector
- 50-meter decay pipe
- steel absorber to stop undecayed particles
- appr. 500 m of dirt for neutrinos to travel
- mean energy of neutrino beam 750 MeV EPS HEP 2009 16-22 July, Krakow, Poland Bar

MiniBooNE detector

- 541 m from the target
- 3 m of dirt overburden
- 12.2 m diameter sphere (10 m diameter "fiducial" region)
- Filled with 800 t of pure mineral oil CH₂ (Fiducial volume: 450 t)
- 1280 8" inner phototubes (10% coverage)
- 240 veto phototubes
- Primary detection method Cherenkov radiation

3:1 slope 10 ft 50 ft 40 ft 40 ft 40 ft

EPS HEP 2009 16-22 July, Krakow, Poland

Particle signatures in the detector

EPS HEP 2009 16-22 July, Krakow, Poland

Oscillation analysis overview

EPS HEP 2009 16-22 July, Krakow, Poland

Bari Osmanov, University of Florida

6 of 18

Track-Based Likelihood

- Fit is done with direct reconstruction of particle tracks
- 7 parameters: t, x, y, z, E, θ , ϕ
- Event is fit under electron-like and muon-like hypotheses
- Positive (negative) likelihood ratio means electron (muon) track

EPS HEP 2009 16-22 July, Krakow, Poland

Oscillation analysis overview

EPS HEP 2009 16-22 July, Krakow, Poland

Boosted Decision Trees

- Event reconstruction with point-like model
- Many input variables
- Many weak classifiers (trees) to form strong classifier
- Training sample (MC) is used to teach the algorithm
- The weight of misidentified events is boosted
- For each variable, cuts are made on values with highest "information gain"

10 of 18

Neutrino mode result (2007)

- Based on 5.58E20 POT
- Ruled out interpretation of LSND signal as oscillations
- Unexplained excess of events in low-energy region

EPS HEP 2009 16-22 July, Krakow, Poland

Anti-neutrino mode result (2008/2009)

- (G.Karagiorgi) Based on 3.386E20 POT (low statistics) Similar backgrounds at low energy 90% ČL limit. E.^{CE} > 200 MeV • Same analysis chain as in neutrino mode 90% CL sensitivity. E^{CE} > 200 MeV 90% CL sensitivity, IE^{CE} > 475 MeV BDT analysis 90% CL limit Events / MeV 0.35 0.3 ∆m²| (eV²/c⁴) Data v, from u⁺ v. from K+ 0.3 v. from K^o π^0 misid 0.25 LSND 99% CL $\Delta \rightarrow N_y$ dirt LSND 90% CL other 0.2 Syst. Error limit E^{CE} > 200 MeV 0.15 CL limit E^{OE} > 475 MeV (ARMEN2 90% CL 0.1 ∆m²| (eV²/c⁴) 0.05 1.4 1.5 0.2 0.4 0.6 0.8 1.2 LSND 99% CL E_v^{QE} (GeV) LSND 90% CL 10 no low-energy excess • currently work on combined $v - \overline{v}$ analysis 10⁻¹ sin²(20)
 - need more stats

EPS HEP 2009 16-22 July, Krakow, Poland

Bari Osmanov, University of Florida

arXiv:0904.1958

11 of 18

Disappearance analysis

- No antineutrino disappearance at 90%CL
- First antineutrino disappearance measurement between 0.1-10 eV²

EPS HEP 2009 16-22 July, Krakow, Poland

CCQE absolute XS

(T.Katori)

- κ Pauli blocking parameter
- Updated shape fit results in $M_A = 1.35 \pm 0.17$ GeV
- XS is in good agreement with the extracted model

EPS HEP 2009 16-22 July, Krakow, Poland

XS: NC Elastic

(D.Perevalov)

- Based on 94.5 NC
 elastic candidates
- First measurement in Q² < 0.4 GeV²
- In good agreement with BNL E734 data

XS: NC π^0

- First absolute differential XS measurement of NC π^0 production
- Total XS:

 $(\nu_{\mu}) \sigma = 4.54 \pm 0.04_{stat} \pm 0.71_{sys}$ $\times 10^{-40}$ cm²/nucleon $(\overline{\nu}_{\mu}) \sigma = 1.43 \pm 0.03_{stat} \pm 0.23_{sys}$ $\times 10^{-40}$ cm²/nucleon

EPS HEP 2009 16-22 July, Krakow, Poland

Bari Osmanov, University of Florida

(C.Anderson)

XS: CC π^{+}

(M.Wilking)

EPS HEP 2009 16-22 July, Krakow, Poland

Bari Osmanov, University of Florida

16 of 18

Future plans

- Collect more anti-neutrino data (approved for a new 5E20 POT run)
- Integration of other data sets (NuMI and SciBooNE)
- MicroBooNE can help to determine the nature of low-energy excess

EPS HEP 2009 16-22 July, Krakow, Poland

mane you

MiniBooNE collaboration

www-boone.fnal.gov

- University of Alabama, Tuscaloosa
- Bucknell University, Lewisburg
- University of Cincinnati, Cincinnati
- University of Colorado, Boulder
- Columbia University, Nevis Labs, Irvington
- Embry Riddle Aeronautical University
- Fermi National Accelerator Laboratory
- University of Florida, Gainesville
- Indiana University, Bloomington
- Los Alamos National Laboratory
- Louisiana State University, Baton Rouge
- Massachusetts Institute of Technology, Cambridge
- University of Michigan, Ann Arbor
- Princeton University, Princeton
- Saint Mary's University of Minnesota, Winona
- Virginia Polytechnic Institute and State University, Blacksburg
- Western Illinois University, Macomb
- Yale University, New Haven

EPS HEP 2009 16-22 July, Krakow, Poland