

SEARCHES FOR CHARGINO-NEUTRALINO PRODUCTION AT THE TEVATRON

JARED YAMAOKA DUKE UNIVERSITY

Presented at EPS HEP, 17 July 2009 Krakow Poland, on behalf of the CDF and DØ Collaborations

OUTLINE

% Introduction **SUSY** Trilepton Results (Low Mass) **%**At CDF ₩At DØ Lepton + Jets Result (High Mass) at CDF **Summary**

INTRODUCTION: SUSY

Standard Model (SM) is good, but seems incomplete.
Requires fine tuning, doesn't account for the

dark energy/matter

Supersymmetry (SUSY)
 Symmetry relating fermions and bosons
 Solves the hierarchy problem
 Provides an excellent dark matter candidate

MSUGRA

mSUGRA - minimal SUper GRAvity grand unification is one "flavor" of SUSY.
 *All properties (mass, B.R., etc) determined by five parameters.
 *Because of its relative simplicity it is used as a "standard candle"

Five mSUGRA parameters

- * m₀ : common scalar mass at GUT scale
- * m_{1/2} : common gaugino mass at GUT scale
- ** tan(β) : ratio of Higgs vacuum
 expectation values
- ** A₀ : common trilinear scalar interaction at the GUT scale
 ** sign(µ): µ is the Higgsino mass parameter
 ** |µ²| determined by EWSB

Jared Yamaoka, Duke University

CHARGINO-NEUTALINO DECAYS

Why look at the trilepton channel?

% Good

Three isolated leptons

Large E_T^{Miss}

* Neutrino and "lightest-SUSY-Particle" (LSP) go undetected

Bad

Small cross section
Low E_T leptons

Why look at the leptons +jets channel?

Good ₩W/Z resonances *♣* Large E_T^{Miss} * Neutrino and "lightest-SUSY-Particle" (LSP) go undetected **Bad** Larger background W q $\tilde{\chi}_1^0$

Jared Yamaoka, Duke University

TEVATRON AT FNAL

TEVATRON AT FNAL

Collider Run II Integrated Luminosity

Tevatron is performing excellently * Proton-AntiProton Collisions at

 $\sqrt{s} = 1.96 \text{ TeV}$

* Integrated Luminosity of 6.8 fb⁻¹

* Collecting at ~75 pb⁻¹ / week

Special thanks to the Accel. Division

TEVATRON AT FNAL

General Purpose Detectors

- % Central Tracker
- Calorimetry (EM & Had)
- # Muon System

TRILEPTONS AT CDF

425

CDF TRILEPTON

Create mutually exclusive analysis channels, assigning events to optimize the purity. hi * Find three tight leptons (ttt)

Else two tight leptons and a loose lepton (ttl)

- * Else one tight lepton and two loose leptons (tll)
 - * Else two tight leptons and one track (ttT)
 - * Else one tight lepton, one loose lepton and one track (tlT)

Backgrounds

Sources with at least 3 Leptons: -WZ -ZZ

Jared Yamaoka, Duke University

Sources with 2 Leptons: -WW, Drell-Yan, ttbar -with:

 γ conversion *or* fake lepton *or* isolated track

Sources with 1 Lepton: -W + fake lepton + isolated track

CDF TRILEPTON

Event Selection #1st lepton: E_T=15-20 GeV *2nd & 3rd leptons: E_T=5-10 GeV **Kinematics** [™]mj⁻l⁺ (Z veto) [™]N_{iets}, E^{miss}_T... Search for $\tilde{\chi}_2^0 \tilde{\chi}_1^{\pm}$, CDF Run II Preliminary, 3.2 fb⁻¹ Z⇒ee **3I, Iow MET** 7_____ ZZ Events/ 8 GeV 100 120 E_T³ (GeV) 140 160 Jared Yamaoka, Duke Uni

Define control regions and check the dilepton and trilepton events.

CDF RESULTS

Good agreement between data and SM expectation. So we calculated a limit.

CDF Run II Preliminary, 3.2 fb⁻¹

Channel	SM Expectation	Data
trileptons	1.5 ± 0.2	1
dileptons+track	9.4±1.4	6

Calculate a limit in the mSUGRA model for a particular parameter set.

With 3.2 fb⁻¹ exclude: chargino mass < 164 GeV/c²

2.0 fb⁻¹ results found in **PRL 101, 251801 (2008)**

TRILEPTONS AT DØ

STREET A

EMC-260-147

"high pt"

Jared Yamaoka, Duke University

DØ TRILEPTONS

DØ RESULTS

Good agreement between data and SM expectation. So we calculated a limit.

Channel	SM Expectation	Data
Low p _T	5.4±0.6	9
$High p_T$	3.3 ± 0.4	4

DØ RESULTS

The data can be used to set limits on B.R. to τ increases as a other parameters of mSUGRA. function of tan β 0.3 $\mathfrak{I}(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0) imes \mathsf{BR(3I)}$ (pb) $\begin{array}{c} \textbf{DØ, 2.3 fb}^{1} \\ \textbf{M}(\widetilde{\chi}_{_{1}}^{_{\pm}}) = 130 \text{ GeV}; \text{ } \textbf{M}(\widetilde{\tau}_{_{1}}) - \textbf{M}(\widetilde{\chi}_{_{2}}^{_{0}}) = 1 \text{ GeV} \end{array}$ $m(s\tau_1)-m(\chi^0_2)=1 \text{ GeV/c}^2$ **Observed Limit** * maximal leptonic BR ----- Expected Limit 0.2 **mSUGRA** 0.1 For chargino mass = 130 GeV/c^2 Exclude: $\tan \beta < 9.6$ 10 11 12 78 9 tan β

Jared Yamaoka, Duke University

TRILEPTON SUMMARY

mSUGRA ** Benchmark Scenario: tan(β)=3, A₀=0, μ>0 ** Above is the excluded region in m_{1/2}-m₀ space. ** Limits depend on neutralino-slepton mass difference.

TRILEPTON SUMMARY

LEPTONS+JETS AT CDF

CDF LEPTON+JETS

New channel not explored before that is complementary to the trileptons because it can be used to probe higher masses.

Event Selection: #2 electrons $85 < m_{ee} < 97 \ GeV/c^2$ [≈]2 jets $\% 60 < m_{ii} < 95 \text{ GeV/c}^2$ [₩] E^{miss}T ***** Optimized for different parameter spaces. (> 40, 50, or 60 GeV)

CDF LEPTON+JETS

RESULTS

Good agreement between data and SM expectation. So we calculated a limit.

Cut	SM Expectation	Data
$E^{miss}_{T} > 40 \text{ GeV}$	6.41±0.92	7
$E^{miss}_{T} > 50 \text{ GeV}$	3.76 ± 0.58	2
$E^{miss}_{T} > 60 \text{ GeV}$	2.02 ± 0.33	1

- * For each χ⁰₂ mass we choose the E^{miss}_T cut that gives the best expected limit.
- While there is no excluded space, this channel may be interesting to search for new physics decaying to dibosons.

SUMMARY: SUSY AT THE TEVATRON

** CDF and DØ have searches for Chargino-Neutralino production with up to 3.2 fb⁻¹ of data.

* While there is no signs of signal we are able to set limits.

- ** In the mSURGA model (m₀=60, tan β =3, A₀=0, μ >0):
 - * CDF has excluded chargino masses up to 164 GeV/c² (3.2 fb⁻¹)
 - * DØ has excluded chargino masses up to 155 GeV/c² (2.3 fb⁻¹)
- CDF has added a lepton+jets analysis to probe higher masses.

The Tevatron is collecting high quality data at an unprecedented rate. Expect more results soon. http://www-cdf.fnal.gov/physics/exotic/exotic.html
http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm