

A Boossing Searches for Squarks and Gluinos at the Tevatron

On behalf of the CDF and DO Collaborations

Outline

- Tevatron and the collider experiments
- Supersymmetry in a nutshell
- Squarks and gluinos at the Tevatron
- Searches:
 - Inclusive Jets + MET (Missing Transverse Energy)
 CDF, 2 fb⁻¹, PRL 102, 121801 (2009)
 D0, 2.1 fb⁻¹, PLB 660, 449 (2008)
 - Jets + tau(s) + MET D0, 1 fb⁻¹,
 - combined with DO 2.1 fb⁻¹ jets+MET, submitted to PLB, arXiv:/0905.4086[hep-ex]
 - Exclusive Dijets + MET
 CDF, 2 fb⁻¹, preliminary
- Summary Eric Kajfasz, EPS Krakow, July 16, 2009

Tevatron @ Fermilab

 At 1.96 TeV, the Tevatron is still the world's highest energy collider, and an ideal location to search for new physics.

Eric Kajfasz, EP¹⁰

Detectors @ Tevatron

Multipurpose detectors :

- Electron, muon, tau identification
- Jet and missing energy measurement
- Heavy-flavor tagging through displaced vertices and soft leptons

Supersymmetry in a nutshell 1/2

- Standard Model very successful but not complete
- Supersymmetry (SUSY) is a very popular extension
 - extension of Poincaré group: fermions ↔ bosons
 - solves the hierarchy problem
 - Unification of the gauge couplings
 - Lightest Susy Particle (possible Dark matter candidate)
- On the other hand:
 - full set of new particles ("s"-particles)
 - broken symmetry
 - sparticles masses must not be too high: TeV scale

Supersymmetry in a nutshell 2/2

Standard particles

SUSY particles

R-parity:

Symmetry to avoid B and L number violations.

If conserved, sparticles need to be pair-produced

There is a LSP (dark matter candidate)

MSSM has over hundred new parameters

mSUGRA has only 5

m₀: common scalar mass m_{1/2}: common gaugino mass A₀: common trilinear coupling @GUT scale

tan(β): ratio of Higgs VEV sign(μ): sign of higgsino mass parameter

Squarks/gluinos at the Tevatron 1/2

- mSUGRA as a benchmark model
- Squarks/gluinos can be copiously produced by strong interaction if sufficiently light

 $\tilde{\chi}_1^0$: LSP

7

 LSP is stable seen as missing ET (MET) in detectors

Eric Kajfasz, EPS Krakow, July 16, 2009

Squarks/gluinos at the Tevatron 2/2

- Search in ~2 fb⁻¹ data samples
- Separate searches in the MET + 2 jets, + 3 jets, and + 4 jets final states
- Remove non-collision background
- MET direction not aligned with jets (reduce QCD)
- Lepton veto (reduce W/Z+jets, top, diboson)
- Optimize cuts on leading jets ET, MET and HT (scalar sum of jets ET)

	CDF			DØ			
Analysis	H _T	MET	Jet E _T	H _T	MET	Jet E _T	
	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	(GeV)	
2-jets	330	180	165,100	325	225	35,35	
3-jets	330	120	140,100,25	375	175	35,35,35	
4-jets	280	90	95,55,55,25	400	100	35,35,35,20	

Eric Kajfasz, EPS Krakow, July 16, 2009

Jets + MET: signal region

Analyses	CDF ((2 fb ⁻¹)	DØ (2.1 fb ⁻¹)			
	# Expected	# Observed	# Expected	# Observed		
2-jets	16 ± 5	18	11 ±1 ⁺³ .2	11		
3-jets	37 ± 12	38	$11 \pm 1^{+3}$.2	9		
4-jets	48 ± 17	45	$18 \pm 1^{+6}$.3	20		

main systematics is JES: 10-15 (6-11)% for Bkg (Sig)

combination

For each squark-gluino mass, **CDF** considers the selection which gives the best expected limit

10

10

50

100

Ge<

events / 30

N_{int} ≥ 4 MET>90 HT>280 CDF Run II Preliminary

Data (L = 2.0 fb⁻¹)
 QCD + non QCD Bkg.

non QCD Bkg.

200

missing-E_T[GeV]

150

Total Syst. Uncertainty Bkg.+Sig. $M_{\tilde{a}} = 287 \text{ GeV/c}^2$

250

 $M_{z} = 438 \text{ GeV/c}^{2}$

300

Jets + MET: limits

2.1fb⁻¹

gluinos: m < 280 GeV (CDF), < 308 GeV (DØ), for all squark mass squarks: m < 380 GeV (CDF, DØ), for all gluino mass

Eric Kajfasz, EPS Krakow, July 16, 2009

Jets + tau(s) +MET: intro

Mixing:

- In SUSY, the mass difference between the partners of leptons depend on the lepton mass $\begin{pmatrix} M_{\tilde{\ell}_L}^2 + m_\ell^2 & m_\ell \times (A_\ell - \mu \tan\beta) \\ m_\ell \times (A_\ell - \mu \tan\beta) & M_{\tilde{\ell}_R}^2 + m_\ell^2 \end{pmatrix}$
- Large mixing $-> (\tilde{\tau}_1^+)$ is the lightest slepton and could be the NLSP
- Can be produced in cascade decay of squark (and gluinos)
- Enhancement of final states with taus

"tau corridor"

Signature:

- $p \, \bar{p} \rightarrow \tilde{q} \, \bar{\tilde{q}}$ dominates
- >= 2 jets + >= 1 tau(had) + MET

Dataset: 1.0 fb⁻¹, jet+MET trigger

Model: mSUGRA with tan β =15, A₀=-2m₀, μ <0

Eric Kajfasz, EPS Krakow, July

Jets + tau(s) + MET 1.0 fb⁻¹

Jets + [tau(s)] +MET: combination

Exclusive Dijet + MET

2fb⁻¹

- Similar pre-selection cuts as inclusive squark/gluino search
- Require only 2 jets
- 2 kinematic regions (LoR & HiR) => sensitivity to wide range of new physics
- Low Region : HT(ET(J1)+ET(J2))>125GeV, MET>80 GeV

•Uns : new unstable particle

Inv : new invisible particle

Background	125/80 (Low region)	225/100 (High region)			
⁴ Z → νν̃	888 ± 54	86 ± 13			
$W \to \tau \bar{\nu}$	669 ± 42	50±8			
$W \rightarrow \mu \bar{\nu}$	399 ± 25	33±5			
W → eŷ	256 ± 16	14±2			
Z→Iİ	29 ± 4	2±0			
QCD	49 ± 30	9±9			
γ+jets	75 ± 11	5±1			
Dibosons	90 ± 7	5±0 11±2			
top	74 ± 9				
non-collision	4±4	1±1			
Total Predicted	2533±151	216 ± 30			
Observed	2506	186			

Obs. within 0.2 σ of SM in LoR, 1 σ in HiR

Exclusive Dijet + MET ^{2fb-1}

Leptoquark interpretation in Th. Nunnemann's talk on Saturday	$\tilde{\chi}_{1}^{0}$ is the LSP $\tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}$ are degenerate $m(\tilde{g})/m(\tilde{q}) > 1.2$ No mSUGRA solution Squark pair prod. domination tan $\beta=3$, $A_{T}=-500$, $\mu=-800$	in mass	Inter in SY q = rum (G	mass eV)	$\tilde{g}_{(GeV)}$	$\tilde{\chi}_1^0 \text{ mass}$ (GeV)
Decide kinematic region of	cuts to be	2	2	50	450	72
applied based on best a priori cross			2	20	520	85
section upper limit			1	20	550	89
Low Reg.: point 4	con CDF Run II Preliminary L=2.	0 fb ⁻¹				
High Reg.: points 1,2,3	The expected statements in the limit of the	5% C.L.				
H _T for High Kinematic Region	500 Ay-0, tanj-5, y=0	SUSY point	A priori limit (pb	Obs) limi	served P ^r it (pb) X	ythia LO Section (pb)
100 Data (2.0 fb ⁻¹)	400	1	0.53	0.	37 C	.36
80 - SM Prediction	300 0 1 no mSUG	RA 2	0.90	0.	62 1	.73
	-	3	1.94	1.	33 3	.21
40 ⊢ 4	200 FNAL Run I	4	78.9	73	8.8 5	7.4
20 20 	100 0 100 200 300 400 500 M _g (GeV/c ²)	• 4 0(SU at	ISY po LO usir	ints 2 ng P	2,3 exc ythia X	luded Section

- Tevatron experiments have searched for squarks/gluinos in jets+MET final states on up to 2.1 fb⁻¹ data samples
- CDF/D0 combined limits are in progress
- No evidence of SUSY yet, but ...
- Both experiments have already over 6 fb⁻¹ of recorded data and continue to take high quality data ...
- Stay tuned for updated results!
- For a complete list of results refer to:
 - http://www-cdf.fnal.gov/physics/exotic/exotic.html
 - http://www-d0.fnal.gov/Run2Physics/WWW/results/np.html

τ -ID

narrow calorimeter energy clusters matched to tracks

- separate τ 's into 3 categories, defined by their decay mode

- * π -like (type 1), ρ -like (type 2), and 3-prongs (type 3)
- * implement neural nets (NN) for each τ -type to discriminate τ signal from QCD jets

