Searches for third generation squarks at the Tevatron

Miguel Vidal for the CDF and DØ Collaborations

CIEMAT-Madrid

The 2009 Europhysics Conference on High Energy Physics 16-22 July, 2009 Krakow, Poland

Outline

Introduction

Sbottom Searches

- Sbottom \rightarrow bottom + neutralino
- Sbottom from gluino decay

Stop Searches

- Stop \rightarrow charm + neutralino
- Stop in dilepton signature
- Stop in top-like events

Summary

SUSY

Supersymmetry (SUSY) is the most promising extension of the SM.

New spin-based symmetry relating fermions and bosons: *Q*|*Fermion* >= |*Boson* > *Q*|*Boson* >= |*Fermion* >

SUSY must be broken

SUSY II

- The breaking mechanism determines the phenomenology and the search strategy
- \tilde{t} and \tilde{b} are good candidates for being the lightest s-quark state

Assuming large $tan\beta$

- the mass of third generation squarks could be really low \sim 200 GeV/c^2
- Under these assumptions Tevatron is an excellent place to find SUSY!!

Most of the searches in this talk are signature-based and the goal is to optimize the selection to reduce backgrounds

Tools like heavy flavour tagging are crucial

Miguel Vidal (CIEMAT)

Heavy Flavour Tagging

The goal is to enhance the presence of signal in the sample by identifying HF jets in the final state

- The tagging algorithms identify vertices from long lifetime B hadrons
- The decay distance is $L_{xy} \sim 500 \ \mu {
 m m}$
- The algorithms are based on properties of the secondary vertex and the tracks associated to it
- Different requirements depending on the flavour of the tagged jet:
 - b jets
 - c jets

Sbottom direct production (I)

Constraining of the inclusive search for squarks (previous talk) \Rightarrow looking for b-jets only

The b-tagging is the main tool to enhance the sensitivity (events containing sbottom quarks)

Miguel Vidal (CIEMAT)

Sbottom direct production (II)

Main background before optimization: QCD-Multijet from data

Optimization based on cuts in kinematic variables:

- Missing E_T
- Lead jet E_T
- *H*_T

Two different optimization depending on the mass difference $m(\tilde{b})$ - $m(\tilde{\chi}^0)$

Good agreement with the SM expectation

Sbottom direct production (III)

If sbottoms are light enough, they will be produced via gluino decay

For similar masses, gluino cross section is much larger than the sbottom cross section

- Very clean signature (4-bjets + Missing Ε_T)
- Complementary to the previous search
- QCD-Multijet background estimated from data as tag-rate

Sbottom from gluino decay (II)

Missing $E_T > 70$ GeV and double b-tagging required in all events

Optimization Process:

1st NN to remove the QCD-Multijet background 2nd NN to remove the top-pair background

Optimization Regions:

Large $\Delta \mathbf{m} \Rightarrow \mathbf{m}(\tilde{g}) = 335$, $\mathbf{m}(\tilde{b}) = 260$ Small $\Delta \mathbf{m} \Rightarrow \mathbf{m}(\tilde{g}) = 335$, $\mathbf{m}(\tilde{b}) = 315$

Good agreement with SM prediction in a high Missing E_T environment

Sbottom from gluino decay (III)

Phys. Rev. Lett 102, 221801 (2009)

Miguel Vidal (CIEMAT)

Miguel Vidal (CIEMAT)

Stop decaying into charm and neutralino (I)

When the stop is the next-to-lightest SUSY particle, the main decay channel is to charm and neutralino

Final state: 2 c-jets + Missing E_T

g

- QCD-Multijet background estimated from data as a tag-rate
- NN against QCD-Multijet, the main background

FPS HFP09

Stop decaying into charm and neutralino (II)

Challenging from the experimental point of view due to charm tagging

A dedicated flavour separator for this analysis:

Charm Hadron Analysis-Oriented Separator (CHAOS)

CHAOS is a NN with a two dimensional output optimized to enhance the sample with c jets

Good agreement with the SM in the final discriminant

Miguel Vidal (CIEMAT)

Stop decaying into charm and neutralino (III)

Stop in dilepton signature (I)

If the \tilde{t} is light and the $\tilde{\nu}$ is also light, the dominant decay channel contains charged leptons

- Signature similar to the $t\bar{t}$ production in the dilepton channel
- Softer leptons in the final state
- Kinematics also different because of the large mass of the $\tilde{\nu}$

• The eµ channel is the most sensitive one

• $Z \rightarrow \tau \tau$

Optimization via:

- Missing E_T cut > 18 GeV
- Angular cuts: leptons (e and μ) not aligned with Missing E_T

Remaining backgrounds: WW and $t\bar{t}$

Stop in dilepton signature (III)

95% C.L. limit on $m(\tilde{\nu})$ - $m(\tilde{t})$ plane

Also new CDF result with 1 fb⁻¹

16/07/09 17 / 20

EPS HEP09

Miguel Vidal (CIEMAT)

Stop in top-like events (I)

If the \tilde{t} is the lightest squark and is more massive than the lightest $\tilde{\chi}^+$: $\tilde{t} \rightarrow b \tilde{\chi}^+ \rightarrow b l \nu \tilde{\chi}^0$

Final state: 2 b-jets, Missing E_T and 2 opposite-sign leptons

- Decay very similar to the top quark \Rightarrow main background top production
- Good agreement with the SM predictions (mainly tt)

Miguel Vidal (CIEMAT)

Stop in top-like events (II)

95% C.L. limits on Cross Section and $m(\tilde{\chi}^0)$ -m(\tilde{t}) plane

D0 limit in cross section \Rightarrow Phys. Lett. B 674, 4 (2009)

Miguel Vidal (CIEMAT)

EPS HEP09

16/07/09 19 / 20

Summary

- Tevatron and experiments are performing really well
 - $\circ \sim 7 \ \text{fb}^{-1}$ delivered
 - $\bullet\ \sim 6\ fb^{-1}\ recorded$
- No evidence of third generation squarks in more than 4 fb⁻¹ of data
- The SUSY search program is continuously producing new results (and improving limits)
- New tools under development to increase sensitivity

Tevatron is already where nobody has been before and we will stay there for a while !!!

More information: http://www-cdf.fnal.gov/physics/exotic/exotic.html http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htm

Miguel Vidal (CIEMAT)