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Motivation

Search for New Physics in transitions
→ Measurement of the properties of oscillating particles:

K 0 B0 D0 B0
s
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Motivation

Search for New Physics in transitions
→ Measurement of the properties of oscillating particles:

K 0 B0 D0 B0
s

I Evidence for D0 − D̄0 Mixing, also at CDF 1

1
http://www-cdf.fnal.gov/physics/new/bottom/070809.blessed-CharmMixing/dmix_pubnote.pdf
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Motivation

Search for New Physics in transitions
→ Measurement of the properties of oscillating particles:

K 0 B0 D0 B0
s

I B0
s sector still partially unexplored.

I 2006: Mixing frequency ∆ms of the B0
s measured by CDF and D∅

I Now: Measurement of the mixing phase βs

I Accessible through interference of decays with and without mixing

Bs −→ J/Ψ(→ µ+µ−) φ(→ K+K−)
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The CKM Matrix

I The Cabibbo-Kobayashi-Maskawa matrix connects mass and weak quark
eigenstates 0@ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1A
I To conserve probability, CKM matrix must be unitary.

I Unitary relations can be represented as unitarity triangles.

I Subject of this measurement βSM
s = arg(− VtsV

∗
tb

VcsV
∗
cb

)
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The Neutral B0
s -System

Flavor eigenstates of the Bs meson differ from mass eigenstates and mass
eigenvalues are different. → Bs oscillates with frequency

∆ms = mH −mL = (17.77± 0.12)ps−1

Mass eigenstates have different decay widths:

∆Γ = ΓL − ΓH ≈ 2|Γ12|cos(φs) with φs = arg

„
− M12

Γ12

«
Standard Model expectation values:

φSM
s = 4 · 10−3 and βSM

s = 0.02

New Physics affects both phases by same quantity 1:

2βJ/Ψφ
s = 2βSM

s − φNP
s and φJ/Ψφ

s = φSM
s + φNP

s

If the new physics phase φNP
s dominates over the SM phases 2βSM

s and φSM
s

→ neglect SM phases and obtain:

2βJ/Ψφ
s = −φNP

s = −φJ/Ψφ
s

1
arxiv:0705.3802v2
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The Tevatron

I Tevatron: circular particle accelerator at
the Fermilab (near Chicago, Illinois)

I Proton-Antiproton collisions

I
√

s = 1.96 TeV

I Two detectors: CDF and D∅

Luminosity / Experiment:

Int. Lumi. fb−1

delivered ≈ 7.0
on tape ≈ 5.8
this analysis ≈ 2.8
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The CDF Detector

Multi purpose detector
featuring . . .

I Tracking system contained
inside a solenoid

I Electromagnetic and
hadronic calorimeters

I Muon detectors (|η| < 2)

I Particle identification
(dE/dx and TOF)
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Signal Sample

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Transversity angles and Proper decay time

I Tagging information

≈ 3200 events
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Transversity Angels

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Transversity angels and Proper decay time

I Tagging information
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-1CDF Run II Preliminary        L = 2.8 fb

An angular analysis is performed to disentangle
CP even and CP odd components. → increase
sensitivity on βs

~ρ = (ΨT , θT , φT ) are angles given in the
transversity basisa

a
hep-ph/9511363
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Proper Decay Time

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Transversity angels and Proper decay time

I Tagging information

Mean lifetime assuming no CP violation (β
J/Ψφ
s = 0):

τ(Bs) = (1.53± 0.04(stat.)± 0.01(syst.)) ps
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Flavour Tagging

Mixing phase βs and decay width difference ∆Γ are extracted using an
unbinned maximum likelihood fit in

I Mass

I Transversity angels and Proper decay time

I Tagging information

Tagging used to increase the sensitivity on the
parameters.
Approach:

I OST: exploits decay products of other
b-hadron in the event (εD2 ≈ 1.2 %)

I SST: exploits the correlations with
particles produced in fragmentation
(εD2 ≈ 3.6 %, used in this analysis only
in Lint < 1.4 fb−1)

Output: Decision (b or b̄) and probability of being correct
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Flavour Tagging

Breaking News: First CDF amplitude scan after the 2006 observation paper!

Performance of the flavour tagger can
be determined on data by measuring
the amplitude of the oscillation.

Decay channel:

B0
s → D−s (→ φ(→ K+K−)π−)π+

Tagger:

SSKT

Amplitude Interpretation:
A < 1.0: tagger overestimates itself
A > 1.0: tagger underestimates itself
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Results 2 3
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SM prediction

New Physics

I Errors of βs and ∆Γ are
not Gaussian → study
confidence region

I p − value = 7%

I 1.8 σ from SM

2
http://www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged_BsJPsiPhi_update_prelim/

3
arXiv:0712.2397v1 [hep-ex]
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Combined Results

Combination of the up-to-date D∅ measurement with the previous CDF
measurement 4:
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4
arXiv:0808.1297v3 [hep-ex]
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Evolution in the Past and Future Possibilities

Evolution of the deviation from the SM:
Probability to observe a non-SM βs at
CDF:

Date Analysis Deviation

Dec 2007 CDF (1.35/fb) 1.5 σ
Mar 2008 D∅ (2.8/fb) 1.7 σ
Jul 2008 CDF (2.8/fb) 1.8 σ
Jul 2008 Combination 2.2 σ

Fluctuations? Maybe! But the coherent

pattern is interesting!
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Conclusions and Future Plans

Conclusions:

I Measurements of CPV in Bs system done by CDF

I Study confidence region in ∆Γ-βs plane

I D∅ observes similar deviations from SM predictions

I The combined HFAG result has 2.2 σ deviation

I One possible explanation: existence of fourth generation

Future Plans:

I Collect more data, perhaps even in 2011

I Inclusion of Two Track Trigger data

I Improvements in Tagging and PID

I Add other decay channels, e.g. Bs → J/ψf0
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Thanks for your Attention
and

Stay tuned for Updates!
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Decay Topology

Bs −→ J/Ψ (→ µ+µ−) φ (→ K+K−)
(spin=0) (spin=1) (spin=1)

Conservation of angular momentum lead to three different final states:
L = 0, 2 (s-wave),(d-wave) CP even
L = 1 (p-wave) CP odd

Choice of basis:

Transversity basisa with
corresponding decay
amplitudes:
A⊥ CP odd
A0 CP even
A‖ CP even

and angles

~ρ = (ΨT , θT , φT )

a
hep-ph/9511363
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The Neutral B0
s -System

Time evolution of Bs flavor eigenstates described by Schrödinger equation:

i
∂

∂t

„
|B0

s (t) >

|B̄0
s (t) >

«
=

„
M− i

2
Γ

«„
|B0

s (t) >

|B̄0
s (t) >

«
Diagonalize mass (M) and decay matrices (Γ) → mass eigenstates:

|BH
s (t) > = p|B0

s (t) > −q|B̄0
s (t) >

|BL
s (t) > = p|B0

s (t) > +q|B̄0
s (t) >

Flavor eigenstates differ from mass eigenstates and mass eigenvalues are
different. Bs oscillates with frequency ∆ms = mH −mL ≈ 2|M12|

∆ms = (17.77± 0.12)ps−1

Mass eigenstates have different decay widths:

∆Γ = ΓL − ΓH ≈ 2|Γ12|cos(φs) with φs = arg

„
− M12

Γ12

«
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Relationship of the Phases

The different phases and their SM expectation value:

φSM
s = arg

„
− M12

Γ12

«
≈ 4 · 10−3 and βSM

s = arg

„
− VtsV

∗
tb

VcsV ∗cb

«
= 0.02

New Physics affects both phases by same quantity 5:

2βJ/Ψφ
s = 2βSM

s − φNP
s

φJ/Ψφ
s = φSM

s + φNP
s

If the new physics phase φNP
s dominates over the SM phases 2βSM

s and φSM
s

→ neglect SM phases and obtain:

2βJ/Ψφ
s = −φNP

s = −φJ/Ψφ
s

5
arxiv:0705.3802v2
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Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥ − δ||)

− η sin(∆ms t) cos(δ⊥ − δ||) cos(2βs)
˜

V(t) = e−Γt [cos(δ⊥) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase

20 / 28



Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥ − δ||)

− η sin(∆ms t) cos(δ⊥ − δ||) cos(2βs)
˜

V(t) = e−Γt [cos(δ⊥) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase

20 / 28



Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥ − δ||)

− η sin(∆ms t) cos(δ⊥ − δ||) cos(2βs)
˜

V(t) = e−Γt [cos(δ⊥) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase

20 / 28



Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥ − δ||)

− η sin(∆ms t) cos(δ⊥ − δ||) cos(2βs)
˜

V(t) = e−Γt [cos(δ⊥) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase

20 / 28



Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥ − δ||)

− η sin(∆ms t) cos(δ⊥ − δ||) cos(2βs)
˜

V(t) = e−Γt [cos(δ⊥) sin(2βs) sinh(∆Γt/2)

+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase

20 / 28



Lifetime and Transversity Angels

Time and angular probability for B0
s :

d4P(t, ~ρ)

dtd~ρ
∝ |A0|2f1(~ρ)T+(t) + |A|||2f2(~ρ)T+(t)

+ |A⊥|2f3(~ρ)T−(t) + |A0||A|||f5(~ρ) cos(δ||)T+(t)

+ |A||||A⊥|f4(~ρ)U(t) + |A0||A⊥|f6(~ρ)V(t)

T±(t) = e−Γt [cosh(∆Γt/2)∓ cos(2βs) sinh(∆Γt/2)

∓ η sin(∆ms t) sin(2βs)]

U(t) = e−Γt
ˆ
cos(δ⊥ − δ||) sin(2βs) sinh(∆Γt/2)
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+ η cos(∆ms t) sin(δ⊥)

− η sin(∆ms t) cos(δ⊥) cos(2βs) ]

Explanation

I Angular functions

I Polarization
amplitudes

I Time evolution

I Strong phases
δ⊥ = arg(A⊥A∗0 )
δ‖ = arg(A‖A

∗
0 )

I Decay width
difference

I CPV Phase
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Lifetime and Transversity Angels
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Angular Functions

f1(~ρ) = 2cos2ΨT (1− sin2θT cos2φT )

f2(~ρ) = sin2ΨT (1− sin2θT sin2φT )

f3(~ρ) = sin2ΨT sin2θT

f4(~ρ) = −sin2ΨT sin2θT sinφT

f5(~ρ) = 1/
√

2sin2ΨT sin2θT sin2φT

f6(~ρ) = 1/
√

2sin2ΨT sin2θT cosφT
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2D likelihood profile comparison with published result
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OST in B+
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OST in B−
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OST in B±
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Neural Network for B±
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Neural Network for Bs
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Invariant Mass of B+
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