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Search for New Physics in transitions
— Measurement of the properties of oscillating particles:

KO B° D° B?

S

» Evidence for D° — D° Mixing, also at CDF !
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http://www-cdf.fnal.gov/physics/new/bottom/070809.blessed-CharmMixing/dmix_pubnote.pdf
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Search for New Physics in transitions
— Measurement of the properties of oscillating particles:

KO B° DY B?

S

B? sector still partially unexplored.
2006: Mixing frequency Am; of the B? measured by CDF and D@

v

v

> Now: Measurement of the mixing phase s

\4

Accessible through interference of decays with and without mixing

By — J/W(— p ) o(— KTK")

S
+
S



The CKM Matrix

» The Cabibbo-Kobayashi-Maskawa matrix connects mass and weak quark
eigenstates

Vud Vus Vub
Vcd Vcs Vcb
Vie Vis Vi

> To conserve probability, CKM matrix must be unitary.

» Unitary relations can be represented as unitarity triangles.

VauaVigy + VeaViy, + ViaVi, = 0 VsV + Ves Vo + ViV, = 0

ViV

g PR Vel

2wl 0,0 Ny (10

AR 0,0) Bs( )

(0.0) T 40
» Subject of this measurement | 32" = arg(— &S&Z’) :Q!(IT
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The Neutral B%-System

Flavor eigenstates of the Bs meson differ from mass eigenstates and mass
eigenvalues are different. — Bs oscillates with frequency

Amg = my — my = (17.77 £ 0.12)ps "
Mass eigenstates have different decay widths:

AT =T, — Ty ~ 2|T1a|cos(bs) with | s = arg< _ "L)

BV

Standard Model expectation values:
pM=4.10"%  and SM — 0.02
New Physics affects both phases by same quantity *:
25V =265 — 9" and ¢3/*? = 3" + 91"

If the new physics phase ¢¥ dominates over the SM phases 235" and ¢M
— neglect SM phases and obtain:

BV = —gl = — gV
2 KIT
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http://arxiv.org/abs/0705.3802

» Tevatron: circular particle accelerator at
the Fermilab (near Chicago, lllinois)

» Proton-Antiproton collisions
> /s =1.96 TeV
» Two detectors: CDF and Do

Luminosity (pb")
c o
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The CDF Detector

Multi purpose detector

featuring . ..

Ceniral Drit Chamber

Yo » Tracking system contained
Hadron Calorimeter . . .

Wiuon Detector inside a solenoid

Steel (Magn. yokes)

» Electromagnetic and
ISL Silayers

o Tighe SVX-I Sidetectar hadronic calorimeters
T —_— » Muon detectors (|n] < 2)
Solenaidal Magnet » Particle identification
= dE/dx and TOF
ez e/ :

T
PrTTTEE R e el
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Signal Sample

Mixing phase s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

» Mass
» Transversity angles and Proper decay time

» Tagging information

CDF Run Il Preliminary L=28"

i
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Transversity Angels

Mixing phase s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

> Mass
» Transversity angels and Proper decay time

» Tagging information

CDF Run Il Preliminary L=28fb"

An angular analysis is performed to disentangle
CP even and CP odd components. — increase
sensitivity on s

all data
F signal region data
400 sideband region data
E —— fit projections

7= (Vr,01,47) are angles given in the
transversity basis®

?hep-ph/9511363
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http://arxiv.org/abs/hep-ph/9511363

Proper Decay Time

Mixing phase s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

> Mass
» Transversity angels and Proper decay time

» Tagging information

[ CDF Run Il Preliminary 2.81b"

E
gm“

even

10

-

o L L R AL

‘-0‘.1‘ ' ;U 01 — 0.2 = 0.3

ot (W 9 form]
A . . . J/Ve .

Mean lifetime assuming no CP violation (55 =0)

7(B) = (1.53 + 0.04(stat.) £ 0.01(syst.)) ps AT

)
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Flavour Tagging

Mixing phase s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

> Mass
» Transversity angels and Proper decay time

» Tagging information

Tagging used to increase the sensitivity on the
parameters.
Approach:

» OST: exploits decay products of other
b-hadron in the event (eD? ~ 1.2 %)

» SST: exploits the correlations with
particles produced in fragmentation
(eD? = 3.6 %, used in this analysis only
in Line < 1.4 fb71)

Output: Decision (b or b) and probability of being correct ﬂ(IT
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Flavour Tagging

’ Breaking News: First CDF amplitude scan after the 2006 observation paper! ‘

Performance of the flavour tagger can ILALE Fm¢ KK () CDFRun2 Preliminary, L = 2.8 1"
be determined on data by measuring =) [ men

= F 1.650, (stat.
the amplitude of the oscillation. S 2 COF Run 2 measurement (1 1h7)

£ S Sensitivity = 26.2 ps™

< 1k il " M

Decay channel:

B — Dy (— ¢(— K"K )n )n" 0

Tagger: -1
SSKT

Amplitude Interpretation:
A < 1.0: tagger overestimates itself 10 20 30 .
A > 1.0: tagger underestimates itself Mixing Frequency in ps
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Results 2 3

CDF Run Il Preliminary L=281fbt

+ — SM prediction
~ 0.6 —os%cCL.
" I — 68%C.L.
£ 04
= L
< 0.2F » Errors of 3s and AT are
L not Gaussian — study
0.0 . .
L confidence region
-0.2F > p— value = 7%
[ » 1.8 o from SM
-04r
r =New Physics
-0.6¢ L | L

1
B, (rad)
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thtp ://www-cdf . fnal.gov/physics/new/bottom/080724.blessed-tagged _BsJPsiPhi_update_prelim/
3 arXiv:0712.2397v1 [hep-ex]


http://www-cdf.fnal.gov/physics/new/bottom/080724.blessed-tagged_BsJPsiPhi_update_prelim/
http://arxiv.org/abs/0712.2397v1

Combined Results

Combination of the up-to-date D@ measurement with the previous CDF

measurement *:

‘ n
&
o
—
<

0.4

0.2f

-0.6
-1

HFAG
0 CDF 1.35 b +DO 2.8~
68% CL —
95% CL  — 1
99.7% CL —
@
\
p-value = 0.031 : ]
2.20 from SM
5 3.0 05 0 05 1.0 15
J
3" [rad]

p — value = 3.1%
2.2 o from SM

4 arXiv:0808.1297v3 [hep-ex]


http://arxiv.org/abs/0808.1297

Evolution in the Past and Future Possibilities

Evolution of the deviation from the SM: Probability to observe a non-SM f; at

CDF:
CDF Simulated Data, Assume B = 0.4
Date Analysis Deviation > 1.0*7%316,“&3%med
Dec 2007 _ CDF (1.35/7b) 150 R
Mar 2008 D@ (2.8/fb) 170 g 08
Jul 2008 CDF (2.8/fb) 180 & e
Jul 2008 Combination 220 £ ’
@ 04
z
Fluctuations? Maybe! But the coherent ook
pattern is interesting! '
0% 5 10

Integrated Luminosity (fb™)

IT

14/28



Conclusions and Future Plans
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Conclusions and Future Plans

Conclusions:
> Measurements of CPV in B; system done by CDF
» Study confidence region in Al-3; plane
» D observes similar deviations from SM predictions
» The combined HFAG result has 2.2 o deviation
» One possible explanation: existence of fourth generation
Future Plans:
» Collect more data, perhaps even in 2011
> Inclusion of Two Track Trigger data
» Improvements in Tagging and PID
Add other decay channels, e.g. Bs — J/v¥fy

v
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Thanks for your Attention
and

Stay tuned for Updates!
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Decay Topology

Bs
(spin=0)

— JN(=ptpT) ¢ (= KTKT)
(spin=1)

(spin=1)

Conservation of angular momentum lead to three different final states:

L=0
L=1

, 2

(p-wave)

]/ Wi rest frame

(s-wave),(d-wave)

CP odd

O rest frame

CP even

Choice of basis:

Transversity basis? with
corresponding decay
amplitudes:

A, CPodd

Ao CP even

A CP even
and angles

p=r,07,671)

P |
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http://arxiv.org/abs/hep-ph/9511363

The Neutral B%-System

Time evolution of B; flavor eigenstates described by Schrodinger equation:

(502 o) (50)

Diagonalize mass (M) and decay matrices (I') — mass eigenstates:
BI(t) > = p|BI(t) > —q|BI(t) >
|B:(t) > = p|B2(t) > +q|B2(t) >

Flavor eigenstates differ from mass eigenstates and mass eigenvalues are
different. Bs oscillates with frequency Ams = my — my = 2|My,|

Ams = (17.77 £0.12)ps™*

Mass eigenstates have different decay widths:

M2

AT =T, — Ty ~ 2| 12|cos(¢s) with | ¢s = arg< - @>
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Relationship of the Phases

The different phases and their SM expectation value:

M _ Vis Vi
M — arg(— ﬁlj) ~4.107° and oM — arg(— V;V:{) =0.02

New Physics affects both phases by same quantity °:

2800 = 2pM — 9l
Ve = M4 g

If the new physics phase ¢F dominates over the SM phases 28" and ¢fM
— neglect SM phases and obtain:

28/ = " = gt/
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Lifetime and Transversity Angels

Time and angular probability for B?:

FPED) o JAoPR(AIT (0 + 14 PAT: (0
p
+  ALPAD)T-(2) + |Aol| Ay |f5(5) cos(8)) T4 (1)
+  |AALIG(P)U(L) + |Adl|AL (D) V(1)
Ti(t) = e "t [cosh(Alt/2) T cos(28s)sinh(Alt/2)
Fnsin(Amst) sin(20s)]
Uit) = et [cos(61 — d) sin(28s) sinh(Ar't/2)
+ncos(Amst) sin(dL — dy))
—nsin(Amst) cos(61 — §))) cos(20s) ]
V(t) = e Tt[cos(d,)sin(20s)sinh(Alt/2)

+ncos(Amst) sin(d,)
—nsin(Amst) cos(d, ) cos(20s) ] ﬂ(IT
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Lifetime and Transversity Angels

Time and angular probability for B?:

4
TPED o JmPAGIT () + 14 PAAT ()
p
+ IALPA()T- (1) + [AollAy 1 5(7) cos(d)T (D) £y janation
+  AIIALIG(R)U(E) + | Aol |ALIfs(9) V(1) » Angular functions
Ti(t) = e "t [cosh(Alt/2) T cos(28s)sinh(Alt/2)
Fnsin(Amst) sin(20s)]
Uit) = et [cos(61 — d) sin(28s) sinh(Ar't/2)
+ncos(Amst) sin(dL — dy))
—nsin(Amst) cos(61 — §))) cos(20s) ]
V() = et [cos(d1 ) sin(283s) sinh(AT't/2)

+ncos(Amst) sin(d,)
—nsin(Amst) cos(d, ) cos(20s) ] ﬂ(IT
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, p)
dtdg

o |AolA(ATL(t) + A P ()T (1)

+ IALPA(P)T- (1) + Aol Ay 5(7) cos(8)TH(D) £y janation

+

A AL (PU(E) + Aol AL Ifs(P) V(1) » Angular functions

> Polarization
Ti(t) = e "t[cosh(Alt/2) T cos(20s)sinh(Alt/2) amplitudes
Fnsin(Amst) sin(20s)]

Uiy = e [cos(61 — &))sin(20s) sinh(ATt/2)
+ncos(Amst) sin(dL — dy))
—nsin(Amst) cos(61 — §))) cos(20s) ]

V(t) e~ [cos(81 ) sin(28s) sinh(Alt/2)

+ncos(Amst) sin(d,)
—nsin(Amst) cos(d, ) cos(20s) ] ﬂ(IT
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*pP
TPED o |aoPRAT () + 14y PR T (1
tdp
ALPAGT () + AollA () <os(@)Te () gy ation
+ A IALIB(A)U(E) + |Aol|ALIfs(5)V(t) » Angular functions
» Polarization
Ti(t) = e "t[cosh(Alt/2) T cos(20s)sinh(Alt/2) amplitudes
Fnsin(Amst) sin(25s)] » Time evolution
Uiy = e [cos(61 — d) sin(28s) sinh(Ar't/2)
+ncos(Amst) sin(dL — dy))
—nsin(Amst) cos(61 — §))) cos(20s) ]
V() = et [cos(d1 ) sin(283s) sinh(AT't/2)

+ncos(Amst) sin(d,)
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, .
TPED o PR (0) + 14y PEAT (0
tdp
ALPAGT-(0) + LAllAY 6 <os(G )T pypsnvion
+  AIIALIB(P)U(E) + | Aol |ALIfs(P)V (1) » Angular functions
» Polarization
Ti(t) = e "t[cosh(Alt/2) T cos(20s)sinh(Alt/2) amplitudes
Fnsin(Amst) sin(25s)] » Time evolution
» Strong phases
Uiy = e [cos(6, — d)|) sin(28s) sinh(Al't/2) 61 = arg(ALAY)
+ncos(Amst) sin(d — 5)|) o) = arg(A)Ad)
—nsin(Amst) cos(d1 — 6))) cos(20s) |
V(t) = e Tt[cos(d,)sin(20s)sinh(Alt/2)

+ ncos(Amst) sin(d, )
—nsin(Amst) cos(0, ) cos(20s) ] ﬂ(IT
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, .
TPED o |aoPRAT () + 14y PR T (1
tdp
+ IALPAGIT-(0)+ Aol |6(2) cos(B)T(0) e
+ 1A IALIAPU) + Aol AL B(AV() » Angular functions
» Polarization
Ti(t) = e "tcosh(Alt/2) T cos(28s)sinh(Al't/2) amplitudes
Fnsin(Amst) sin(25s)] » Time evolution
» Strong phases
Uiy = e [cos(5. — d))) sin(20s) sinh(AT't/2) 61 = arg(ALAY)
+ncos(Amst) sin(6, — d))) o) = arg(A)Ad)
—nsin(Amst) cos(d1 — 6))) cos(20s) | >
V(t) = e Tt[cos(d,)sin(20s)sinh(ATt/2)

+ ncos(Amst) sin(d, )
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, .
TPED o |aoPRAT () + 14y PR T (1
tdp
ALPAGT () + AollA) (7 <os(6)Te () gyoponation
+  AIIALIB(P)U(E) + | Aol |ALIfs(P)V (1) » Angular functions
» Polarization
Ti(t) = e "tcosh(Alt/2) F cos(20s)sinh(Al't/2) amplitudes
Fnsin(Amst) sin(2055)] » Time evolution
. ‘ » Strong phases
U(t) = e "Flcos(dL — ) sin(28s) sinh(ATt/2) 51 = arg(ALAY)
+ncos(Amst) sin(6, — d))) o) = arg(A)Ad)
—nsin(Amst) cos(d1 — 6))) cos(20s) ] >
V(t) = e Tt[cos(d,)sin(20s)sinh(ATt/2) » CPV Phase

+ ncos(Amst) sin(d, )
—nsin(Amst) cos(d ) cos(23s)] ﬂ(IT
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Angular Functions

fi(p) = 2cos®Wr(1— sin’Orcos’dr)
H(p) = sin®Wr(1l— sinOrsin’ér)
f(p) = sin®Wrsin’0r

f(p) = —sin*Wrsin207singr

f(p) = 1/V2sin2Wrsin’0rsin2¢r
5(p) = 1/V2sin2Vrsin207cospr
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2D likelihood profile comparison with published result

CDF Run Il Preliminary L=281b"

— 0.6 i

‘n
204

<02

0.0 #
0.2

-0.4

-0.6




OST in BT

1

CDF Run Il Preliminary L=28fb CDF Run Il Preliminary L=281"

=}
n

B* only, 2 1.35 b
Slope =0.91+ 0.16

B only, £ 1.35 fb* 2
Slope =0.82+0.13

NN OST measured dilution
o o B

e o o o 9o o

P U Y
.6 0.7 0.8 0.9 1.0
predicted dilution

67070809 1.0 085%. 7]
predicted dilution NN OS

S o
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OST in B~

CDF Run Il Preliminary L =2.8fb" CDF Run Il Preliminary ~ L=281b"
1.

=}
n

B only, 2 1.35 fot
Slope =1.04+0.17

B only, £ 1.35 fb 2
Slope =0.93+0.15

o o r

——

NN OST measured dilution

e o o o 9o o

‘+\7‘H\\‘\H\‘HH‘HH‘HH‘HH‘HH‘HH‘HHb

Lol o b & . I P
.6 0.7 0.8 09 1.0 0'8. 4 0.6 0.7 0.8 09 1.0
predicted dilution NN OST predicted dilution

S o
oF
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OST in B*

1

CDF Run Il Preliminary L=28fb CDF Run Il Preliminary L=281"

=}
n

B*" combined, 2" 1.35 fb™*
Slope =0.98+0.12

B*" combined, 1 1.35 fb*
Slope = 0.88+ 0.10

NN OST measured dilution
o o B

e o o o 9o o
O
o o ¢
i o =}
T T T T I I T

| I T U i L P U Y
.6 0.7 0.8 09 1.0 0'8.0 0.1 4 0.6 0.7 0.8 09 1.0
predicted dilution NN OST predicted dilution

S o
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Neural Network for B

CDF Run 2 Preliminary L ~ 2.8 fb™*

— Signal
— Background

@

o

o

o
f

N

o

o

o
f

O’ L | |
-1.0 -0.5 0.0 0.5 1.0
Neural network output
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Neural Network for Bs

CDF Run 2 Preliminary L ~ 2.8 fb™*

02

10000/
© r — Signal
[} L — Background
o 8000}
2 i
©
O
5 6000[
C
o]
)

1.0 0.5 0.0 0.5 1.0

Neural network output
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Invariant Mass of B+

CDF Run Il Preliminary L=28fb"
3 3500

3000

events/2M

2500

2000

1500

‘N‘\H\‘HH‘HH‘HH‘

1000

500

0 Lo b b b b b b b b b b b a a1y
518 52 522 524 526 528 53 532 534 536 538
m (I KH[GeV]
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