Baryonic B decays

at BABAR

Marcus Ebert

University of Rostock

 $B^{0} \rightarrow \overline{A}p\pi^{-}$ just published PRD 79, 112009 (2009)

reconstruction, background reduction and signal extraction branching fraction asymmetry \overline{A} polarization

$B^0 \rightarrow \overline{A}p\pi^-$ reconstruction

- 426 fb⁻¹ data taken at $\Upsilon(4S)$ corresponding to 467 million $B\overline{B}$ pairs analyzed
- $\overline{\Lambda} \to \overline{p}\pi^+$ decay mode used
 - 1.111 GeV/ $c^2 < m(\overline{p}\pi^+) < 1.121$ GeV/ c^2
 - mass constraint fit requiring common vertex for p and π candidates
- $\overline{\Lambda}$ candidate combined with two oppositely charged tracks
 - full decay chain fitted to reconstruct the B^0 vertex using total beam energy and position of beam spot as constraints ; $P_{vtx} > 10^{-6}$

$B^{0} \rightarrow \overline{A}p\pi^{-}$ background reduction

- event shape variables against $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s, c)combined in a Fisher discriminat (92% of this background removed but only 28% of signal)
- flight length of the $\overline{\Lambda}$ candidate divided by its error $\frac{\beta \tau}{\sigma_{\beta \tau}} > 20$
- $\overline{B}^0 \to \Lambda_c^+ \overline{p}, \Lambda_c^+ \to \Lambda \pi^+$ removed by requiring $|m(\overline{\Lambda}\pi^+) - m(\Lambda_c)_{PDG}| > 20 \text{ MeV}/c^2$ (five standard deviations)

$B^0 \rightarrow \overline{A}p\pi^-$ signal extraction

- 2D maximum likelihood fit to ΔE - m_{ES}
 - signal PDF: 2xGaussians for $m_{\rm ES}$ and 2xGaussians for ΔE background PDF: ARGUS function (Z.Phys. C48,543 (1990)) for $m_{\rm ES}$ and first order polynomial for ΔE
 - only means of narrow ΔE and $m_{\rm ES}$ signal Gaussians, parameter of the ARGUS function, linear coefficient of ΔE background and the event yields for signal and background are fitted
- ${}_{s}\mathcal{P}$ lot technique (Nucl. Instrum. Methods A555,356 (2005)) used to determine the $m(\overline{\Lambda}p)$ distribution
- $\bar{\Lambda}$ polarisation measured as function of $E^*_{\bar{\Lambda}}$ using 4D maximum likelihood fit in m_{ES} , ΔE , $E^*_{\bar{\Lambda}}$ and $\cos \theta_h$

 $B^0 \to \overline{\Lambda} p \pi^-$

$\mathcal{B}(B^0 \to \overline{A}p\pi^-)$ results

 $m_{\rm ES} > 5.274 \, {\rm GeV}/c^2$

 $\mathcal{B}(B^{0} \to \overline{\Lambda}p\pi^{-}) = \frac{N_{s}}{N_{B\overline{B}} \cdot \mathcal{B}(\overline{\Lambda} \to \overline{p}\pi^{+})} = (3.07 \pm 0.31_{\text{stat.}} \pm 0.23_{\text{syst.}}) \times 10^{-6}$ (Belle: $\mathcal{B}(\overline{B}^{0} \to \Lambda \overline{p}\pi^{+}) = (3.2 \pm^{+0.33}_{-0.29} \pm 0.29) \times 10^{-6}$ (414 fb⁻¹) Phys.Rev.D76,052004 (2007))

 $\mathcal{A} = \frac{\mathcal{B}(\overline{B}{}^0 \to \Lambda \overline{p} \pi^+) - \mathcal{B}(B^0 \to \overline{\Lambda} p \pi^-)}{\mathcal{B}(\overline{B}{}^0 \to \Lambda \overline{p} \pi^+) + \mathcal{B}(B^0 \to \overline{\Lambda} p \pi^-)} = -0.10 \pm 0.10_{\text{stat}} \pm 0.02_{\text{syst.}}$

$B^0 \rightarrow \overline{A}p\pi^-$ polarisation measurement

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\rm H}} = \frac{1}{2} \left[1 + \alpha_{\bar{A}} P\left(E_{\bar{A}}^*\right) \cos\theta_{\rm H} \right]$$

 $\alpha_{\overline{\Lambda}} = -0.642 \pm 0.013$ ($\overline{\Lambda}$ decay-asymmetry parameter) Phys.Lett. B667,1 (2008)

		$E_{\bar{A}}^*$ range (GeV)	
	1.10 - 1.53	1.53 - 1.80	1.80 - 2.40
$N_{\rm S}$	63 ± 9	51 ± 9	55 ± 11
$N_{\rm B}$	519 ± 23	643 ± 26	2663 ± 52
P_L	$-0.08^{+0.47}_{-0.40}\pm0.09$	$+0.64^{+0.73}_{-0.65}\pm0.12$	$\pm 0.97^{+0.62}_{-0.62} \pm 0.08$
P_T	$+0.25^{+0.53}_{-0.58}\pm0.09$	$+0.56^{+0.42}_{-0.48}\pm0.12$	$+0.05^{+0.61}_{-0.60}\pm0.08$
P_N	$-0.64^{+0.34}_{-0.33}\pm0.09$	$-0.78^{+0.39}_{-0.36} \pm 0.12$	$+0.26^{+0.53}_{-0.53}\pm0.08$

\Rightarrow consistent with full longitudinal right-handed polarization of \overline{A} at large $E_{\overline{A}}^*$

 $\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}$

reconstruction and signal extraction branching fraction resonant subchannels

$\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}$

$\overline{B}^{0} \rightarrow \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}$ reconstruction

- 426 fb⁻¹ data taken at $\Upsilon(4S)$ corresponding to 467 million $B\overline{B}$ pairs analyzed
- $\Lambda_c^+ \to p K^- \pi^+$ decay mode used ($\mathcal{B} = 0.050 \pm 0.013$ Phys.Lett. B667,1 (2008))
 - 2.277 GeV/ $c^2 < m(pK^-\pi^+) < 2.295$ GeV/ c^2
- Λ_c^+ candidate combined with \overline{p} , K^- and π^+ candidates
 - decay chain fitted requiring common vertex for Λ_c^+ , \overline{p} , K^- and π^+ and with mass of Λ_c^+ candidate constraint to the nominal one; $P_{vtx} > 0.002$
- for multiple \overline{B}^0 candidates in an event use the one with $m(pK^-\pi^+)$ closest to $m(\Lambda_c^+)$; for multiple \overline{B}^0 candidates with the same Λ_c^+ candidate use the one with the highest vertex fit probability

$\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- \pi^+$ signal extraction

- phase space divided into different regions to account for resonances and efficiency variation

 (1) 2.447 GeV/c² < m(Λ_c⁺π⁺) < 2.461 GeV/c²
 (2) 0.8 GeV/c² < m(K⁻π⁺) < 1.1 GeV/c² excluding (1)
 rest divided into five bins according to m(Λ_c⁺ pπ⁺)
- signal yield extracted from ΔE distribution in these regions (5.275 GeV/ $c^2 < m_{\rm ES} < 5.286$ GeV/ c^2)
 - only background fitted with first order polynomial and $|\Delta E| < 0.12\,{
 m GeV}$
 - $|\Delta E| < 0.024$ excluded from the fit and later extrapolated to this region
 - difference between observed events and expected background in $|\Delta E| < 0.024~{
 m GeV}$ used as signal yield
- resonant fraction for $\overline{B}{}^0 \to \Sigma_c^{++}(2455)\overline{p}K^-$ and $\overline{B}{}^0 \to \Lambda_c^+\overline{p}\overline{K}{}^{*0}$ extracted from ΔE sideband subtracted $m(\Lambda_c^+\pi^+)$ and $m(K^-\pi^+)$ distributions

 $\frac{\overline{B}^{0} \rightarrow \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}}{\mathcal{B}\left(\overline{B}^{0} \rightarrow \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}\right) \text{ result}}$

Region	$N_{\sf sig}$	ϵ
		[%]
1	17.3 ± 4.6	6.64 ± 0.04
2	26.5 ± 9.7	8.60 ± 0.07
3-7	39.7 ± 12.2	8.94 ± 0.25

$$\mathcal{B}(\overline{B}^{0} \to \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}) = \frac{1}{\mathcal{B}(\Lambda_{c}^{+} \to p K^{-} \pi^{+}) \cdot N_{B\overline{B}}} \cdot \sum_{i=1}^{\ell} \frac{N_{\text{sig},i}}{\epsilon_{i}}$$

 $= (4.33 \pm 0.82_{\text{stat.}} \pm 0.31_{\text{syst.}} \pm 1.13_{\mathcal{B}(\Lambda_c)}) \times 10^{-5}$ preliminary! $\Rightarrow \text{first observation ! (significance of 8.8 standard deviations)}$

study of resonant subchannels

baryonic B decays

B^{0}/B^{-}	branching fraction
decay mode	$[\times 10^{-4}]$
$A\overline{p}$	< 0.0032
$A\overline{p}\pi^{-}$	0.031 ± 0.003
$A\overline{p}\pi^{0}$	$0.030^{+0.007}_{-0.006}$
$p\overline{p}\overline{K}{}^{O}$	0.027 ± 0.004
$p\overline{p}K^{-}$	$0.029^{+0.01}_{-0.008}$
$p\overline{p}$	< 0.0017
$p\overline{p}\pi^-$	0.0162 ± 0.0020
$\Lambda_c^+ \overline{p}$	0.2 ± 0.04
$\Lambda_c^+ \overline{p} \pi^-$	2.1 ± 0.6
$\Lambda_c^+ \Lambda_c^+ K^-$	7 ± 4
$\Lambda_{c}^{+}\overline{p}\pi^{+}\pi^{-}$	11.2 ± 3.2
$\Lambda_c^+ \overline{p} \pi^- \pi^0$	18 ± 6

• $\mathcal{B}(2body) < \mathcal{B}(3body) < \mathcal{B}(4body)$

Hou and Soni Phys.Rev.Lett. 86,4247
 (2001)

"One has to reduce the energy release and at the same time allow for baryonic ingredients to be present in the final state"

- energy taken away by additional particles
- \Rightarrow invariant mass of baryon-antibaryon system should be low \rightarrow threshold enhancement
 - seen in many baryonic B decays $B^- \to \Lambda_c^+ \overline{p} \pi^-, \, B^- \to p \overline{p} K^-$
 - but also in totaly different reactions like $e^+e^- \rightarrow \gamma A \overline{A}$

other explanations: Rosner Phys.Rev.D68,014004

baryon-antibaryon mass distribution

 \Rightarrow threshold enhancement for both decay modes visible

Marcus Ebert, University of Rostock

Conclusion

- decay $B^0 \rightarrow \overline{\Lambda} p \pi^-$ studied (PRD 79, 112009 (2009))
 - $\mathcal{B}(B^0 \to \overline{\Lambda}p\pi^-) = (3.07 \pm 0.31 \pm 0.23) \times 10^{-6}$
 - no hint for CP-violating branching fraction asymmetry
 - \overline{A} polarisation consistent with full longitudinal right-handed polarisation at large $E_{\overline{A}}^*$
- decay $\overline{B}{}^{0} \to \Lambda_{c}^{+} \overline{p} K^{-} \pi^{+}$ also studied; preliminary results :

$$- \mathcal{B}(\overline{B}{}^0 \to \Lambda_c^+ \overline{p} K^- \pi^+) = (4.33 \pm 0.82 \pm 0.31 \pm \pm 1.13) \times 10^{-5}$$

 $- \mathcal{B}(\overline{B}{}^0 \to \Sigma_c^+(2455)^{++} \overline{p}K^-) = (1.11 \pm 0.30 \pm 0.09 \pm 0.29) \times 10^{-5}$

$$- \mathcal{B}(\overline{B}{}^0 \to \Lambda_c^+ \overline{p} \overline{K}^{*0}) < 2.41 \times 10^{-5} \quad @90\% C.L.$$

• threshold enhancement in the baryon-antibaryon mass distribution for both decay modes found

BACKUP SLIDES

$_{s}\mathcal{P}lot$ technique used for $B^{0} \rightarrow \overline{\Lambda}p\pi^{-}$

$$\mathcal{L} = \frac{1}{N!} e^{-(N_{\rm S} + N_{\rm scf} + N_{\rm B})} \prod_{e=1}^{N} \left\{ N_{\rm S} \mathcal{P}_{\rm S}(y_e) + N_{\rm scf} \mathcal{P}_{\rm scf}(y_e) + N_{\rm B} \mathcal{P}_{\rm B}(y_e) \right\}, \quad (1)$$

$${}_{s}\mathcal{P}_{n}(y_{e}) = \frac{\sum_{j=1}^{n_{c}} \mathbf{V}_{nj}\mathcal{P}_{j}(y_{e})}{\sum_{k=1}^{n_{c}} N_{k}\mathcal{P}_{k}(y_{e})},$$
(2)

$$\tilde{N}_{S,J} = \sum_{e \in J} \frac{{}_{s} \mathcal{P}_{S}(y_{e})}{\varepsilon(x_{e})}, \qquad (3)$$

 $\tilde{N}_S = \sum_J \tilde{N}_{S,J}$

Systematics for $B^0 \to \overline{\Lambda} p \pi^-$

	source	uncertainty (%)
Overall	Tracking efficiency	2.4
	PID efficiency	1.4
	MC statistics	0.4
	$Bar{B} ext{ counting}$	1.1
	$B^0 \bar{B^0} / B \bar{B}$ fraction	3.2
	$\Lambda \to p\pi$ branching fraction	0.8
Event Selection	Event shape	1.0
requirements	Fit probability	1.0
	Λ flight length	2.8
	$\Lambda ext{ mass}$	2.4
	Λ_c veto	0.5
Fit Procedure	Likelihood parameters	3.9
	ΔE resolution	1.7
	Self cross-feed fraction	0.8
	$_{s}\mathcal{P}\mathrm{lot}$ bias	0.6
Total		7.4

Systematics for $\overline{B}^0 \to \Lambda_c^+ \overline{p} K^- \pi^+$

Source	contribution (%)
tracking	1.4
PID	2.4
$N_{B\overline{B}}$	1.1
signalband definition	3.3
ΔE background shape	4.7
MC statistics	0.4
MC generation model	1.0
$m(\Lambda_c^+)$ cut	3.4
$P(\chi^2)$ cut	0.8
sum	7.5