

Diboson Production At D0

Joseph Haley (for the D0 Collaboration)

July 16, 2009 Europhysics Conference on High Energy Physics Krakow, Poland

Introduction

- Most recent Diboson measurements from D0 experiment at Fermilab's Tevatron Collider
 - ZZ→llll
 - $Z\gamma \rightarrow vv\gamma$
 - $WW+WZ \rightarrow lvqq$
 - WW→lvlv
 - WV Combination ($V = \gamma, Z, W$)

- Diboson production at D0
 - The Tevatron is a vector boson factory
 - ► Able to deliver more than 50 pb⁻¹/week: ~600 *WW*, ~200 *WZ*, and ~100 *ZZ* events!
 - Hadonic environment not as clean as LEP, but
 - Access to diboson processes not available at LEP (WZ and $W\gamma$)
 - Able to probe higher energies

- Probe of new physics above some higher energy scale Λ_{NP}
 - Could result in anomalous trilinear gauge-boson couplings (TGCs)
 - Affects cross sections and event kinematics
 - Anomalous TGCs could give clues to the mechanism for electroweak symmetry breaking
 - SM is the low energy limit of a more general theory

 γWW and ZWW TGCs Probed by WW, WZ, and $W\gamma$ production General Lagrangian has 14 TGC parameters Assume EM gauge invariance and C and P conservation $\Rightarrow 5$ TGC parameters: $g_1^{\ Z}, \kappa_y, \kappa_z, \lambda_y, \lambda_z$

 γZZ and $\gamma \gamma Z$ TGCs Probed by ZZ and $Z\gamma$ production General Lagrangian has 8 TGC parameters Assume CP conservation

$$\Rightarrow 4 \text{ TGC parameters: } h_3^{\gamma}, h_3^{Z}, h_4^{\gamma}, h_4^{Z}$$

- Probe of new physics above some higher energy scale Λ_{NP}
 - Could result in anomalous trilinear gauge-boson couplings (TGCs)
 - Affects cross sections and event kinematics
 - Anomalous TGCs could give clues to the mechanism for electroweak symmetry breaking
 - In the SM:

$$\lambda_{\gamma} = \lambda_{z} = 0 \text{ and } g_{1}^{z} = \kappa_{\gamma} = \kappa_{z} = 1 \Rightarrow \Delta \kappa_{v} \equiv \kappa_{v} - 1$$

$$h_{3}^{\gamma} = h_{3}^{z} = h_{4}^{\gamma} = h_{4}^{z} = 0 \Rightarrow \Delta \kappa_{v} \equiv \kappa_{v} - 1$$

 $\Delta \kappa$, Δg , λ , or $h \neq 0 \Rightarrow$ anomalous TGCs

- Probe of new physics above some higher energy scale Λ_{NP}
 - Could result in anomalous trilinear gauge-boson couplings (TGCs)
 - Affects cross sections and event kinematics
 - Anomalous TGCs could give clues to the mechanism for electroweak symmetry breaking
 - In the SM:

$$\lambda_{\gamma} = \lambda_{Z} = 0 \text{ and } g_{1}^{Z} = \kappa_{\gamma} = \kappa_{Z} = 1 \Rightarrow \Delta \kappa_{V} \equiv \kappa_{V} - 1$$

$$h_{3}^{\gamma} = h_{3}^{Z} = h_{4}^{\gamma} = h_{4}^{Z} = 0$$
$$\Delta \kappa_{V} \equiv \kappa_{V} - 1$$

$$\Delta g_{1}^{V} \equiv g_{1}^{V} - 1$$

 $\Delta \kappa$, Δg , λ , or $h \neq 0 \Rightarrow$ anomalous TGCs

- Higgs and SUSY motivations
 - Same or similar final states
 - Vital to understand (often significant) diboson backgrounds
 - *E.g.*, high mass Higgs exclusion dominated by $H \rightarrow WW$
 - Many common analysis techniques
 - Diboson measurements provide proving ground for techniques use in searches

(PRL 101, 171803 (2008))

- Selected events in 1.7 fb⁻¹ of Run II data
 - Four isolated leptons

4e channel: Four electrons with $p_T > 30, 25, 15, 15$ GeV

4 μ channel: Four muons with $p_T > 30, 25, 15, 15$ GeV

2e2 μ channel: Two electrons and two muons with $p_T > 25$, 15 GeV

- That came from a pair for Z bosons Dilepton mass $M_{ll} > 70$, 50 GeV (one combo of opposite-charge, like-flavor lepton pairings)
- Very clean signature
 - No SM background with four high p_T leptons!
 - Small $Z(\gamma)$ +jets background
 - Jets reconstructed as leptons
 - Predicted background: 0.14^{+0.03}-0.02
 - Predicted signal: 1.89 ± 0.08
 ⇒ Observe 3 candidate events

 $ZZ \rightarrow IIII$

• Production results

Measured cross section: $\sigma(ZZ) = 1.75^{+1.27}_{-0.86}(\text{stat}) \pm 0.13(\text{syst}) \text{ pb}$ Expected significance: 3.7σ Observed significance: $5.3\sigma \Rightarrow \text{First Tevatron}$ observation!

• Combined with previous $ZZ \rightarrow IIII$ (1 fb⁻¹) analysis and $ZZ \rightarrow IIvv$ (2.7fb⁻¹)

Measured cross section: $\sigma(ZZ) = 1.60 \pm 0.63(\text{stat})^{+0.16}_{-0.17}(\text{syst}) \text{ pb}$ Expected significance: 4.8 σ Observed significance: 5.7 σ

SM NLO: $\sigma(ZZ) = 1.4 \pm 0.1 \text{ pb}$

- Selected events in 3.6 fb⁻¹ of Run II data
 - Single high energy photon with $E_T > 90 \text{ GeV}$

 - Reduce backgrounds:
 - $W \rightarrow lv$ and $Z \rightarrow ll$ background
 - Veto muons, addit'l EM objects, isolated tracks
 - Non-collision backgrounds
 (*e.g.*, bremsstrahlung from beam halo)
 - Pointing algorithm: require $|z_{\text{EM}} z_{\text{vtx}}| < 10 \text{ cm}$
 - - Require no jets ($p_T > 15 \text{ GeV}$)
 - Predicted background: 17.3 ± 2.4
 - Predicted signal: 33.7 ± 3.4
 - Observe 51 candidate events

• Production results Measured cross section: $SM NLO: \sigma(Z\gamma; E_T^{\gamma} > 90 \text{ GeV}) \cdot BR(Z \rightarrow \nu\nu) = 39 \pm 4 \text{ fb}$

 $\sigma(Z\gamma; E_T^{\gamma} > 90 \text{ GeV}) \cdot BR(Z \rightarrow vv) = 32.9 \pm 9(\text{stat+syst}) \pm 2(\text{lumi}) \text{ fb}$

Observed significance: $5.1\sigma \Rightarrow$ First Tevatron observation!

- 95% limits on anomalous γZZ and $\gamma \gamma Z$ TGCs
 - Use photon E_T spectrum
 - Highly sensitive to anomalous TGCs

 $|h_3^{\gamma}| \le 0.036 |h_3^{Z}| \le 0.0019$ ($\Lambda_{\rm NP}$ =1.5 TeV) $|h_4^{\gamma}| \le 0.035 |h_4^{Z}| \le 0.0019$

• Combine with $Z\gamma \rightarrow ee\gamma$ and $Z\gamma \rightarrow \mu\mu\gamma$ $|h_3^{\gamma}| < 0.033 |h_3^{Z}| < 0.0017$ $|h_4^{\gamma}| < 0.033 |h_4^{Z}| < 0.0017$

• Production results Measured cross section: $SM NLO: \sigma(Z\gamma; E_T^{\gamma} > 90 \text{ GeV}) \cdot BR(Z \rightarrow vv) = 39 \pm 4 \text{ fb}$

 $\sigma(Z\gamma; E_T^{\gamma} > 90 \text{ GeV}) \cdot BR(Z \rightarrow vv) = 32.9 \pm 9(\text{stat+syst}) \pm 2(\text{lumi}) \text{ fb}$

Observed significance: $5.1\sigma \Rightarrow$ First Tevatron observation!

- 95% limits on anomalous γZZ and $\gamma \gamma Z$ TGCs
 - Use photon E_T spectrum

 $|h_3^{\gamma}| < 0.033 ||h_3^{Z}| < 0.0017$

 $|h_4^{\gamma}| < 0.033 |h_4^{Z}| < 0.0017$

Highly sensitive to anomalous TGCs

 $|h_3^{\gamma}| \le 0.036 |h_3^{Z}| \le 0.0019$ ($\Lambda_{\rm NP}$ =1.5 TeV) $|h_4^{\gamma}| \le 0.035 |h_4^{Z}| \le 0.0019$

• Combine with $Z\gamma \rightarrow ee\gamma$ and $Z\gamma \rightarrow \mu\mu\gamma$

Princeton University

World best!

$WW/WZ \rightarrow lvqq$

(PRL 102, 161801 (2009))

- Selected events in 1.1 fb⁻¹ of Run II data
 - One isolated lepton with $p_T > 20 \text{ GeV}$

 - Two jets with $p_T > 30, 20 \text{ GeV}$
 - Reduce backgrounds:
 - Multijet backgrounds
 - "Transverse" W mass > 35 GeV
 - ► *W*+jets (*Z*+jets, top)
 - "Random Forest" multivariate discriminant
 - ► Fit to determine cross section

• Production results

Measured cross section:

$$\sigma(WW+WZ) = 20.2 \pm 4.4(\text{stat+syst}) \pm 1.2(\text{lumi}) \text{ pb}$$

Expected significance: 3.7σ

Observed significance: $5.3\sigma \Rightarrow$ First Tevatron evidence!

SM NLO: $\sigma(WW+WZ) = 16.1 \pm 0.9 \text{ pb}$

- 95% limits on *yWW* and *ZWW* TGCs
 - Use p_T of dijet system
 - Requiring SU(2)xU(1) symmetry (a.k.a. LEP parameterization):

$$\Delta \kappa_{z} = \Delta g_{I}^{z} - \Delta \kappa_{\gamma} \cdot \tan^{2} \theta_{W}$$
 and $\lambda_{\gamma} = \lambda_{z}$

 \Rightarrow Three independent parameters

$$-0.44 < \Delta \kappa_{\gamma} < 0.55 \quad (\Lambda_{\rm NP}=2 \text{ TeV}) \\ -0.10 < \lambda < 0.11 \\ -0.12 < \Delta g_{I}^{Z} < 0.20$$

- Equal couplings scenario (a.k.a. $\gamma WW = ZWW$) $\Delta \kappa_z = \Delta \kappa_{\gamma}, \ \Delta g_1^{\ z} = \Delta g_1^{\ \gamma} = 1, \text{ and } \lambda_{\gamma} = \lambda_z$
 - ⇒ Two independent parameters

$$-0.16 < \Delta \kappa < 0.23$$

 $-0.11 < \lambda < 0.11$

$WW \rightarrow lvlv$

- Selected events in 1 fb⁻¹ of Run II data
 Two isolated leptons *ee*, *eµ*, or *µµ* of opposite charge
 Leading lepton pT > 25 GeV
 Trailing lepton pT > 15 GeV

 Reduce backgrounds:

 Z→II backgrounds
 Optimized E_T cuts for each channel
 - ► *tt* and *W*+jets
 - Require balanced event
 - $|\mathbf{p}_{\mathrm{T}}^{\mathbf{h}} + \mathbf{p}_{\mathrm{T}}^{\mathbf{h}} + \mathbf{E}_{\mathrm{T}}| < 20(ee), 25(e\mu), 16(\mu\mu)$

Process	ee	еµ	μμ
Signal	12.38 ± 0.62	44.43 ± 0.86	7.89 ± 0.35
Background	11.08 ± 1.80	24.21 ± 3.78	2.91 ± 0.46
Total expected	23.46 ± 1.90	68.64 ± 3.88	10.79 ± 0.58
Data	22	64	14

• Combination of four analyses with $\sim 1 \text{ fb}^{-1}$

Princeton University

(preliminary)

- Combination of four analyses with $\sim 1 \text{ fb}^{-1}$
- 95% limits on γWW and ZWW TGCs ($\Lambda_{NP}=2$ TeV)
 - Requiring SU(2)xU(1) symmetry: $\Delta \kappa_{z} = \Delta g_{I}^{z} - \Delta \kappa_{y} \cdot \tan^{2} \theta_{W}$ and $\lambda_{y} = \lambda_{z}$ DØ Run II, 0.7-1.1 fb¹ 0.1 preliminary $-0.29 < \Delta \kappa_{\gamma} < 0.38$ $-0.08 < \lambda < 0.08$ 0.05 $-0.07 < \Delta g_1^Z < 0.16$ 0 🔭 🌗 • Equal couplings: -0.05 $\Delta \kappa_{Z} = \Delta \kappa_{\gamma}, \ \Delta g_{1}^{Z} = \Delta g_{1}^{\gamma} = 1, \text{ and } \lambda_{\gamma} = \lambda_{Z}$ SM 68% Contour 95% Contour $-0.11 < \Delta \kappa < 0.18$ -0.10.1 -0 0.05 0.15 0.2 -0.05 $-0.08 < \lambda < 0.08$ Δκ

⇒ Approaching sensitivity of the LEP2 experiments

Conclusions

- So far everything agree with the Standard Model
- Many of the measurements are firsts or bests from a hadron collider

Conclusions

- So far everything agree with the Standard Model
- Many of the measurements are firsts or bests from a hadron collider

Conclusions

- So far everything agree with the Standard Model
- Many of the measurements are firsts or bests from a hadron collider

And we now have over 6 fb⁻¹ of reconstructed data
 ⇒ The future is bright for Diboson physics at D0!

thank you

Anomalous Couplings

ZWW and *yWW* couplings
General Lorentz invariant Lagrangian has 14 couplings

$$\frac{dWWV}{WWV} = i g_{1}^{V} (W_{\mu\nu}^{*} W^{\mu} V^{\nu} - W_{\mu}^{*} V_{\nu} W^{\mu\nu}) + i \kappa_{V} W_{\mu}^{*} W_{\nu} V^{\mu\nu} + i \frac{\lambda_{V}}{M_{W}^{2}} W_{\lambda\mu}^{*} W_{\nu}^{\mu} V^{\nu\lambda}
- g_{4}^{V} W_{\mu}^{*} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu}) + g_{5}^{V} \varepsilon^{\mu\nu} (M_{\mu}^{*} \partial_{\lambda} W_{\nu} - \partial_{\lambda} W_{\mu}^{*} W_{\nu}) V_{\rho}
+ i \widetilde{k}_{V} W_{\mu}^{*} W_{\nu} \widetilde{V}^{\mu\nu} + i \frac{\lambda_{V}}{M_{W}^{2}} W_{\lambda}^{*} W_{\nu}^{\mu} \widetilde{V}^{\nu\lambda}$$

SM: $\boldsymbol{g}_{I}^{\gamma} = \boldsymbol{g}_{I}^{Z} = \boldsymbol{\kappa}_{\gamma} = \boldsymbol{\kappa}_{Z} = 1$

and all others are zero

- γZZ and $\gamma \gamma Z$ couplings: • General Lorentz invariant Lagrangian has 8 couplings $L_{\gamma ZV} = -ie \left[\left(h_1^V F^{\mu \nu} + h_3^V \widetilde{F}^{\mu \nu} \right) Z_{\mu} \frac{\left(\Box + m_V^2 \right)}{M_Z^2} V_{\nu} + \left(h_2^V F^{\mu \nu} + h_4^V \widetilde{F}^{\mu \nu} \right) Z^{\alpha} \frac{\left(\Box + m_V^2 \right)}{M_Z^4} \partial_{\alpha} \partial_{\mu} V_{\nu} \right]$
 - C and P conserving: $g_1^{\gamma}, g_1^{Z}, \kappa_{\gamma}, \kappa_{Z}, \lambda_{\gamma}, \lambda_{Z}$
 - C and P violating, but CP conserving: g_5^{Z} , h_3^{γ} , h_3^{Z} , h_4^{γ} , h_4^{Z}
 - CP violating: $g_4^{Z}, g_4^{Z}, \kappa_{\gamma}, \kappa_{Z}, \lambda_{\gamma}, \lambda_{Z}, h_1^{\gamma}, h_1^{Z}, h_2^{\gamma}, h_2^{Z}$

Anomalous Couplings

• **ZWW** and **yWW** couplings

- In the SM:
 - γWW and ZWW TGCs • $g_1^{\ z} = \kappa_{\gamma} = \kappa_z = 1$ and $\lambda_{\gamma} = \lambda_z = 0$
- No γZZ and $\gamma \gamma Z$ TGCs • $h_3^{\gamma} = h_3^{Z} = h_4^{\gamma} = h_4^{Z} = 0$
- Measure deviations from SM • $\Delta \kappa_{v} \equiv \kappa_{v} - 1$, $\Delta g_{1}^{v} \equiv g_{1}^{v} - 1$ • $\Delta \lambda_{v} \equiv \lambda_{v}$, $\Delta h_{3}^{v} \equiv h_{3}^{v}$, $\Delta h_{4}^{v} \equiv h_{4}^{v}$ • $\Delta x \neq 0 \Rightarrow \text{anomalous TGC}$

 $ZZ \rightarrow IIII$

• Three candidate events

		e_1^+	e_2^+	e_3^-	e_4^-
	$p_T (\text{GeV})$	107	59	52	16
4e	η	0.66	0.25	-0.64	-0.85
candidate 1	ϕ	4.10	1.08	0.46	2.62
	$M_{\ell\ell} \ ({\rm GeV})$	e_1^+ 89:	e_4^- ± 3	e_2^+ 61 :	e_3^- ± 2
		e_1^+	e_2^+	e_3^-	e_4^-
	$p_T (\text{GeV})$	83	75	35	26
4e	η	0.64	0.40	0.85	1.17
candidate 2	ϕ	6.16	3.80	3.83	1.40
	$M_{\ell\ell} \ ({\rm GeV})$	$e_{1}^{+}e_{3}^{-}$ 99 ± 3		$e_{2}^{+}e_{4}^{-}$ 90 ± 4	
	· · · · · ·	μ_1^+	μ_2^-	μ_3^-	μ_4^+
	$p_T (\text{GeV})$	115	77	42	24
4μ	η	0.04	-1.01	0.77	-1.93
candidate	ϕ	1.69	4.26	5.29	0.36
		$\mu_1^+\mu_3^-$		$\mu_2^-\mu_4^+$	
	$M_{\ell\ell} \ ({\rm GeV})$	148^{+32}_{-18}		90^{+12}_{-8}	