

W and Z boson production (D0)

David Khatidze Brown University

Outline

- Introduction
- Electron charge asymmetry $W \rightarrow eV$
- A study of the $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ events at low p_T using a novel technique
- Forward Backward asymmetry (A_{FB}) measurement

Introduction

• W and Z production at Tevatron

- Constrain Parton Distribution Functions (PDFs)
 - W charge asymmetry
- Test higher order QCD and QED corrections
 - Z boson A_{FB} measurement and Zpt measurement

D0 detector

- Important components for these analyses
 - Silicon tracker (SMT) and fiber tracker (CFT) : measure tracks of decay leptons

W and Z events

- Z: two high P_T charged lepton
- W: one high P_T charged lepton and one high P_T neutrino
- Neutrino can not be detected: Missing E_T used to estimate P_T^{ν}

W asymmetry

- On average u quark carries more momentum than d quark, which causes asymmetry in W⁺ and W⁻ distributions.
 - Rapidity η=-ln[tan(θ/2)], θ is azimuthal angle.
- Use Ws to probe proton structure.
- W→ev⇒W asymmetry hard to measure as we don't know longitudinal momentum of neutrino.
- W asymmetry \rightarrow electron asymmetry.
- Electron asymmetry: $A(y) \otimes (V-A)$

Asymmetry

- The result corrected for the detector smearing effects
- Due to CP invariance, A(y)=-A(-y). The asymmetry "folded" to increase statistics.

TallowpZI:PT analysis using novel method

- P form factoreto belideterminet from data
- Test QCD
- Z) most affected by g2.
 Understand the production of inclusive vector bosons.

oorly constrained ative QCD insufficient.

- NP effects absorbed into universal form factor, e.g. BLNY.
- At the tevatron the Z P_T is very sensitive to the g2 parameter.

$$\frac{d\sigma}{dydq_T^2} = \frac{\sigma_0}{S} \int \frac{d^2b}{(2\pi)^2} e^{-iq_T \cdot \vec{b}} \tilde{W}^{\text{PERT}} e^{-S^{\text{NP}}b^2} + Y$$
$$S_{\text{BLNY}}^{\text{NP}}(b, Q^2) = -g_1 - g_2 \ln(\frac{Q^2}{Q_0}) - g_1 g_3 \ln(100x_A x_B)$$

G.A.Ladinsky, C.P.Yuan, Phys. Rev. 50 4239 (1994); C.Balazs, C.P.Yuan, Phys.Rev.A56: 5558-5583, 1997

3

- Previous measurement of the dσ/dp_T have been dominated by systematics
 - "unfolding" for the lepton p_T resolution
 - Correcting for the Z pT dependence of the event selection efficiency
- Decomposing Z pT into at and aL largely fixes the problem.

Results

- Consistent measurement in di-muon and di-electron channels.
- Experimental uncertainty comparable to the world average.
- Theoretical PDF uncertainty is dominant.

 θ^* defined in Collins-Soper frame (Z/ γ^* rest frame)

$$A_{FB} = (\sigma_F - \sigma_B) / (\sigma_F + \sigma_B) = (N_F - N_B) / (N_F + N_B)$$

Motivation

- New resonance can interfere with Z and γ^*
- A_{FB} is sensitive to $sin^2\theta_W$

Results

- Result corrected for the detector smearing effects.
- $\sin^2 \theta_{W} = 0.2327 \pm 0.0018(\text{stat}) \pm 0.0006(\text{syst})$

Conclusions

- Many exciting W and Z results at D0
- Many in the pipeline
- W charge asymmetry 0.75 fb⁻¹, A_{FB} I fb⁻¹, Z pT analysis 2 fb⁻¹. Now more than 6 fb⁻¹ data recorded

Thank you!

g2 measurement

- Start with 15 MC samples for different values of g2.
- Data vs MC χ^2 is calculated for each of the 15.
- 2nd order polinomial is fitted to the results.

Asymmetry calculation

- Remove SM background using Monte Carlo simulated data.
- Calculate charge misidentification rate (g) and correct for it.
- Estimate QCD background using samples that pass loose and tight shower shape conditions.
 - N_L=N_e + N_{QCD}
 - $N_T = \epsilon N_e + f N_{QCD}$
 - E probability for real electron to pass tight cut, given it passed loose cut.
 - f same thing for fake electron.
- Calculate E, f and g first and then calculate asymmetry.