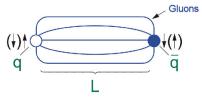
Meson Spectroscopy at COMPASS

F. Haas

for the COMPASS collaboration

TU München, Physik Department E18

EPS HEP 2009, July 18th 2009



Overview

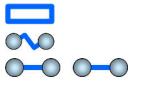
- Motivation
- COMPASS 2004
 - Diffractive Dissociation into 3π Final States
 - Diffractive Dissociation into 5π Final States
- 3 COMPASS 2008/2009
 - Spectrometer Upgrade
 - Diffractive Dissociation into 3π Final States
 - Central Production
 - Further Analysis
- Conclusion and Outlook

Quarkmodel and QCD

- X(I^GJ^{PC})
- LS-Coupling:

$$J = \ell \oplus s = |\ell - s|...\ell + s,$$

 $(s = 0, 1)$


• Isospin and G-Parity conservation: $G = (-1)^{l+\ell+s}$

• Parity:
$$P = (-1)^{(\ell+1)}$$

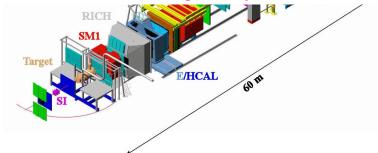
• Charge conjugation: $C = (-1)^{(\ell+s)}$

Quarkmodel and QCD

QCD allows states which are forbidden in the quarkmodel

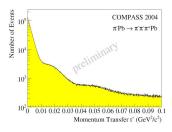
Glueballs: gg, ggg

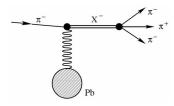
Hybrids: $qg\overline{q}$

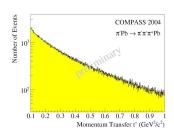

Tetraquarks: $(q\overline{q})(q\overline{q})$

- Mixing of color neutral configurations with same quantum numbers
- leading $q\overline{q}$ term vanishes

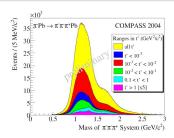
$$\Rightarrow$$
 exotic $J^{PC}: 0^{--}, 0^{+-}, 1^{-+}, ...$

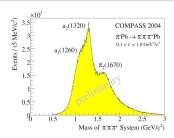



COMPASS can contribute significantly in the low mass region



Diffractive Dissociation into 3π Final States

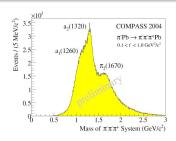

- $\pi^- + Pb \to \pi^- \pi^- \pi^+ + Pb$
- non-elastic but exclusive events
- target stays intact
- only momentum and angular momentum transfer to beam particle

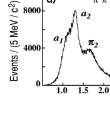

Invariant Mass of 3π System

COMPASS

- $p_{\pi} = 190 \, GeV/c$
- 4M events in 3 days (full t range)
- 450k events in $0.1 < t' < 1.0 \ GeV^2/c^2$

Invariant Mass of 3π System




COMPASS

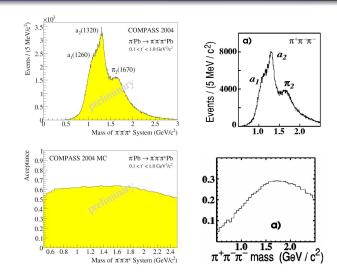
- $p_{\pi} = 190 \, GeV/c$
- 4M events in 3 days (full t range)
- 450k events in $0.1 < t' < 1.0 \ GeV^2/c^2$

 $\pi^{+}\pi^{-}\pi^{-}$

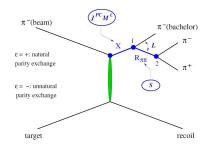
Invariant Mass of 3π System

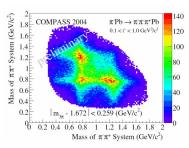
a)

8000


COMPASS

- $p_{\pi} = 190 \, GeV/c$
- 4M events in 3 days (full t range)
- 450k events in $0.1 < t' < 1.0 \ GeV^2/c^2$


BNL E852

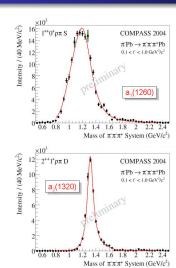

- $p_{\pi} = 18 \, GeV/c$
- 250k events in 0.08 < t' < 1.0 GeV^2/c^2

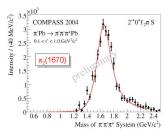
Invariant Mass of 3π System

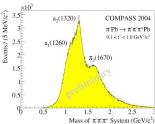
Partial Wave Analysis - Isobar Model

PWA: more detailed informations on quantum numbers of resonances

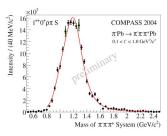
PWA Technique

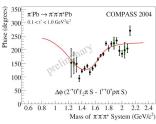

Illinois/Protvino/Munich Program - BNL/Munich Program

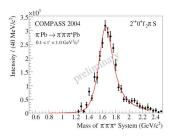

Mass-Independent PWA


$$\sigma_{indep}(\tau, m, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_{i} T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, m) / \sqrt{\int \left| \psi_i^{\epsilon}(\tau', m) \right|^2 d\tau'} \right|^2$$

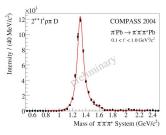
- ullet Production amplitudes $T_{ir}^\epsilon o$ extended maximum likelihood fit
- Decay amplitudes $\psi_i^{\epsilon}(\tau, m)$ (Zemach tensors, D functions)
- 41 partial waves $i = J^{PC} M^{\epsilon}[Y]L$
 - with $[Y] = (\pi\pi)_S$, $\rho(770)$, $f_0(980)$, $f_2(1270)$, $\rho_3(1690)$
- Background wave
- **2** Mass-Dependent χ^2 fit to results of step 1
 - 6 waves
 - Parameterized by Breit-Wigner
 - Coherent background for some waves

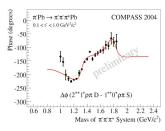

Intensities of Major Waves



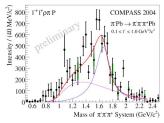


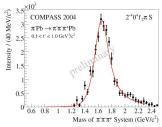
$a_1(1260)$ and $\pi_2(1670)$

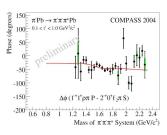




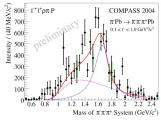
- BW for $a_1(1260) + bgr$ $M = (1255 \pm 6^{+7}_{-17}) MeV/c^2$ $\Gamma = (367 \pm 9^{+28}_{-26}) MeV/c^2$
- BW for $\pi_2(1670)$ $M = (1658 \pm 3^{+24}_{-8}) \text{MeV/c}^2$ $\Gamma = (271 \pm 9^{+22}_{-24}) \text{MeV/c}^2$

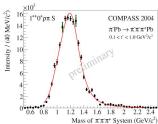

$a_2(1320)$

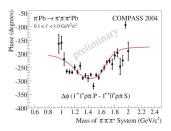




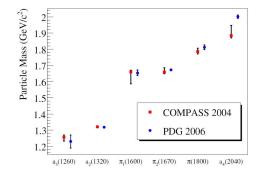
- Two Breit Wigner functions required to describe phase motion
- BW1 for $a_2(1320)$ $M = (1321 \pm 1^{+0}_{-7}) \text{MeV/c}^2$ $\Gamma = (110 \pm 2^{+2}_{-25}) \text{MeV/c}^2$
- BW2 for $a_2(1700)$: $M = 1732 MeV/c^2$, $\Gamma = 194 MeV/c^2$ (fixed PDG values)


$J^{PC}=1^{-+}$ Exotic Wave



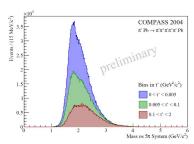


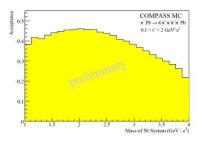
$J^{PC} = 1^{-+}$ Exotic Wave



- BW parameters for $\pi_1(1600)$ $M = (1660 \pm 10^{+0}_{-64})\,\mathrm{MeV/c^2}$ $\Gamma = (269 \pm 21^{+42}_{-64})\,\mathrm{MeV/c^2}$
- Leakage negligible: < 5%

Summary of Waves

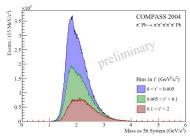

Resonance	Mass	Width	Intensity	Channel
	(MeV/c^2)	(MeV/c^2)	(%)	$J^{PC}M^{\epsilon}[\mathrm{isobar}]L$
$a_1(1260)$	$1255 \pm 6^{+7}_{-17}$	$367 \pm 9^{+28}_{-25}$	$67 \pm 3^{+4}_{-20}$	$1^{++}0^{+} \rho \pi S$
$a_2(1320)$	$1321 \pm 1^{+0}_{-7}$	$110 \pm 2^{+2}_{-15}$	$19.2 \pm 0.6^{+0.3}_{-2.2}$	$2^{++}1^{+} \rho \pi D$
$\pi_1(1600)$	$1660 \pm 10^{+0}_{-64}$	$269 \pm 21^{+42}_{-64}$	$1.7 \pm 0.2^{+0.9}_{-0.1}$	$1^{-+}1^{+} \rho \pi P$
$\pi_2(1670)$	$1658 \pm 3^{+24}_{-8}$	$271 \pm 9^{+22}_{-24}$	$10.0 \pm 0.4^{+0.7}_{-0.7}$	$2^{-+}0^{+} f_{2}\pi S$
$\pi(1800)$	$1785 \pm 9^{+12}_{-6}$	$208 \pm 22^{+21}_{-37}$	$0.8 \pm 0.1^{+0.3}_{-0.1}$	$0^{-+}0^{+} f_0 \pi S$
$a_4(2040)$	$1885 \pm 13^{+50}_{-2}$	$294 \pm 25^{+46}_{-19}$	$1.0 \pm 0.3^{+0.1}_{-0.1}$	$4^{++}1^{+} \rho \pi G$

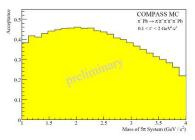

Diffractive Dissociation into 5π Final States

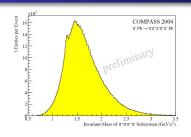
- Higher masses accessible
- many disputed states: $0^{-+}, 1^{++}, 2^{-+}, ...$
- ullet flux tube model: $J^{PC}=1^{-+}$ decay into $b_1(1235)\pi$ and $f_1(1285)\pi$

Invariant Mass of 5π System

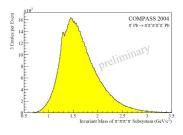
- $\pi^- Pb \to \pi^- \pi^+ \pi^- \pi^+ \pi^- Pb$
- flux tube model: $J^{PC} = 1^{-+}$ decay into $f_1(1285)\pi$
- non-elastic but exclusive events
- target stays intact
- only momentum and angular momentum transfer to beam particle

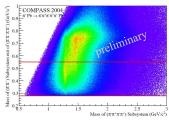


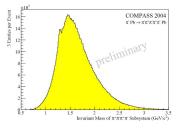


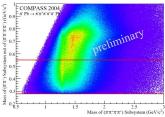

Invariant Mass of 5π System

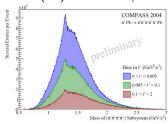
 $\begin{array}{lll} \text{Low } t' & t' \in [0, 0.005] \text{GeV/c}^2 \\ \text{Medium } t' & t' \in [0.005, 0.1] \text{GeV/c}^2 \\ \text{High } t' & t' \in [0.1, 2] \text{GeV/c}^2 \end{array}$

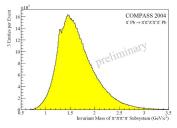

203k events 122k events 59k events

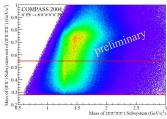


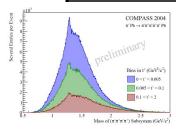


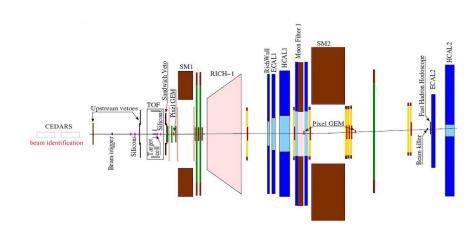

- ullet neutral 4 π subsystem
- three entries per event
- exclusivity cut applied
- sharp peak at 1.3 Gev/c^2

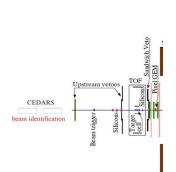



- PDG: branching ratio for $f_1(1285)$ into 4 charged $\pi \rightarrow (11\pm 1)\%$
- 2π neutral susysystem vs. 4π neutral subsystem
- 12 entries per event

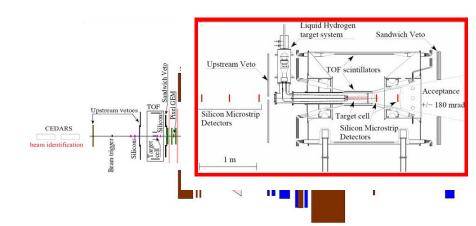



- invariant mass spectrum of the neutral 4π subsystem with cut on $\pi^-\pi^+$ subsystem (red lines)
- cut range: $0.28 \text{GeV/c}^2 < m(2\pi) < 0.55 \text{GeV/c}^2$

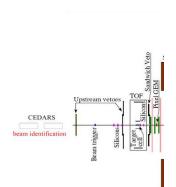



Name	Mass $({ m GeV/c^2})$	$I^{G}(J^{PC})$
f ₀	1370 / 1700	0+(0++)
η'	1403	0+(0-+)
ρ'	1450	1+(1)
<i>b</i> ₁	1235 / 1800	1+(1+-)
f_1	1285 / 1450	$0^{+}(1^{++})$
η_2'	1645	0+(2-+)
t_2	1565	0+(2++)
ρ_3	1690	1+(3)

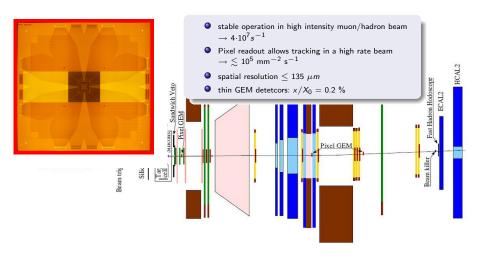
Spectrometer Upgrade 2008

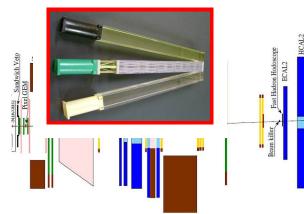


Spectrometer Upgrade 2008 - Beam Particle Identification

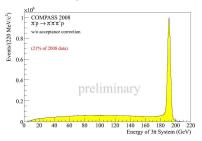


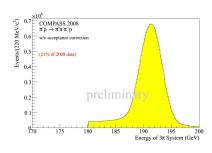
Spectrometer Upgrade 2008 - Liquid Hydrogen Target - Proton Recoil Detector


Spectrometer Upgrade 2008 - Target Region - Silicon Microstrip Detectors

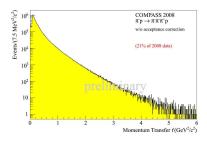


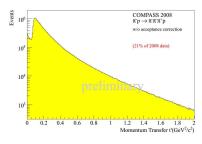
Spectrometer Upgrade 2008 - PixelGEM Detectors


Spectrometer Upgrade 2008 - Electromagnetic Calorimeter

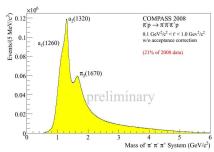


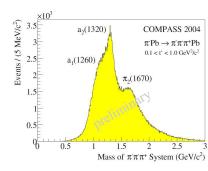
Diffractive Dissociation into 3π Final States


- 190 GeV/c hadron beam \rightarrow 96% π^- , 3.5% K^- , 0.5% \overline{p}
- 40cm liquid hydrogen target
- exclusivity

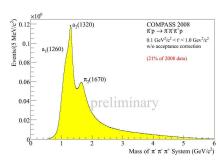


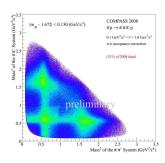
Diffractive Dissociation into 3π Final States


- 190 GeV/c hadron beam \rightarrow 96% π^- , 3.5% K^- , 0.5% \overline{p}
- 40cm liquid hydrogen target
- exclusivity
- ullet only high t' ($t'>0.07 {
 m GeV^2/c^2}$) accessible in 2008



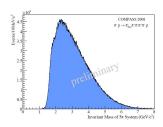
Ivariant Mass Spectrum of 3π Final States

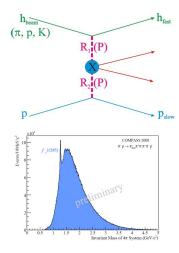

- 190 GeV/c hadron beam \rightarrow 96% π^- , 3.5% K^- , 0.5% \overline{p}
- 40cm liquid hydrogen target
- exclusivity
- $0.1 \text{GeV}^2/\text{c}^2 < t' < 1.0 \text{GeV}^2/\text{c}^2$



Diffractive Dissociation into 3π Final States

- 190 GeV/c hadron beam \rightarrow 96% $\pi^-, 3.5\% K^-, 0.5\% \overline{p}$
- 40cm liquid hydrogen target
- exclusivity
- $0.1 {
 m GeV^2/c^2} < t' < 1.0 {
 m GeV^2/c^2}$
- 170k $\pi_1(1600)$ events expected

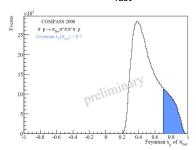




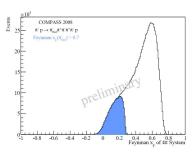
Central Production in COMPASS

•
$$\pi^- p \rightarrow \pi^-_{fast} \pi^- \pi^+ \pi^- \pi^+ p$$

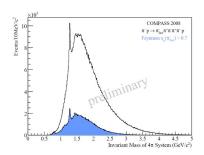
- non-elastic but exclusive events
- target stays intact
- 1.06M events shown here

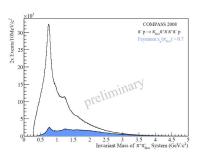


Central Production in COMPASS


Selection of centrally produced events:

$$\Rightarrow$$
 Cut on x_F of π_{fast}^-

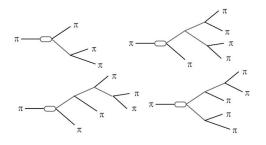



$$x_F = \frac{p_L}{p_L^{max}} \stackrel{CMS}{=} \frac{2p_{L,cms}}{\sqrt{s}}$$

remaining events: 190k

Invariant Mass of Subsystems

Further Analysis


- Diffractive Dissociation into $\pi^-\pi^0\pi^0$ Final States
- Central Production into $\pi^-\pi^0\pi^0$ and $\pi^-\eta\eta$ Final States
- Diffractive Dissociation of $K^-p \to K^-\pi^-\pi^+p$ Final States
- $\pi^- p \to \pi^- K^0_S K^0_S p$ and $\pi^- p \to \pi^- K^+ K^- p$ Final States

- Pilot Run 2004
 - significant amount of data in few days of data taking
 - ullet strong signal in exotic wave 1^{-+} at 1.7 GeV/c
- COMPASS 2008/2009
 - spectrometer upgrade:
 - →CEDARS, liquid hydrogen target, RPD, additional Silicons, PixelGEMs, ECALs
 - Diffractive reactions: 10x BNL E852 statistics
 - Central reactions: 10x WA102 statistics
 - analysis on charged, neutral and kaonic final states
- two independent PWA programs

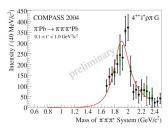
Motivation COMPASS 2004 COMPASS 2008/2009 Conclusion and Outlook

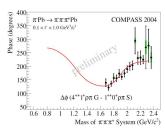
Backup

Interesting Candidate

$$\pi_1(1600) \ 1^-1^{-+}$$

- $(2\pi)^0\pi^-$: $\rho\pi^-$, $f_2(1270)\pi^-$
- $(4\pi)^0\pi^-$: $b_1(1235)\pi^-$, $f_1(1285)\pi^-$
- $\eta'(958)\pi^-$

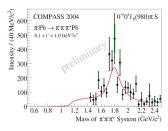

COMPASS has access to all of these decay modes

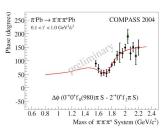

Wave Set of 2004 3π PWA

$J^{PC}M^{\epsilon}$	L	Isobar π	Thresh. [GeV]
0-+0+	S	$f_0\pi$	1.40
0-+0+	S	$(\pi\pi)_{S}\pi$	-
0-+0+	P	$\rho\pi$	-
1-+1+	P	$\rho\pi$	-
1++0+	S	$\rho\pi$	-
1++0+	P	$f_2\pi$	1.20
1++0+	P	$(\pi\pi)_{S}\pi$	0.84
1++0+	D	$\rho\pi$	1.30
1++1+	S	$\rho\pi$	-
1++1+	P	$f_2\pi$	1.40
1++1+	P	$(\pi\pi)_{S}\pi$	1.40
1++1+	D	$\rho\pi$	1.40
2-+0+	S	$f_2\pi$	1.20
2-+0+	P	$\rho\pi$	0.80
2-+0+	D	$f_2\pi$	1.50
2-+0+	D	$(\pi\pi)_{\mathcal{S}}\pi$	0.80
2-+0+	F	$\rho\pi$	1.20
2-+1+	S	$f_2\pi$	1.20
2-+1+	Р	$\rho\pi$	0.80
2-+1+	D	$f_2\pi$	1.50
2-+1+	D	$(\pi\pi)_{s}\pi$	1.20
2-+1+	F	$\rho\pi$	1.20

$J^{PC}M^{\epsilon}$	L	Isobar π	Thresh. [GeV]
2++1+	P	$f_2\pi$	1.50
2++1+	D	$\rho\pi$	-
3++0+	S	$\rho_3\pi$	1.50
$3^{++}0^{+}$	P	$f_2\pi$	1.20
3++0+	D	$\rho\pi$	1.50
3++1+	S	$\rho_3\pi$	1.50
3++1+	P	$f_2\pi$	1.20
3++1+	D	$\rho\pi$	1.50
4-+0+	F	$\rho\pi$	1.20
4-+1+	F	$\rho\pi$	1.20
4++1+	F	$f_2\pi$	1.60
4++1+	G	$ ho\pi$	1.64
1-+0-	P	$\rho\pi$	-
1-+1-	P	$\rho\pi$	-
1++1-	S	$\rho\pi$	-
2-+1-	S	$f_2\pi$	1.20
2++0-	P	$f_2\pi$	1.30
2++0-	D	$\rho\pi$	-
2++1-	P	$f_2\pi$	1.30
FLAT			

$a_4(2040)$





- Constant width BW used for a₄(2040)(branching ratios not known)
- BW parameters $M = \left(1885 \pm 13^{+50}_{-2}\right) \mathrm{MeV/c^2}$

$$\Gamma = (294 \pm 25^{+46}_{-19}) \text{MeV/c}^2$$

$\pi(1800)$

- Constant width BW used for $\pi(1800)$ and low-mass background
- BW parameters $M = (1785 \pm 9^{+12}_{-6}) \, \text{MeV/c}^2$ $\Gamma = (208 \pm 22^{+21}_{-37}) \, \text{MeV/c}^2$