Meson Spectroscopy at COMPASS

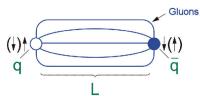
F. Haas

for the COMPASS collaboration

TU München, Physik Department E18

EPS HEP 2009, July 18th 2009

Overview


- 2 COMPASS 2004
 - Diffractive Dissociation into 3π Final States
 - Diffractive Dissociation into 5π Final States

3 COMPASS 2008/2009

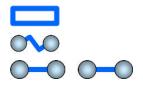
- Spectrometer Upgrade
- Diffractive Dissociation into 3π Final States
- Central Production

Quarkmodel and QCD

- X(I^GJ^{PC})
- LS-Coupling:

$$\mathsf{J} = \ell \oplus s = |\ell - s|...\ell + s,$$

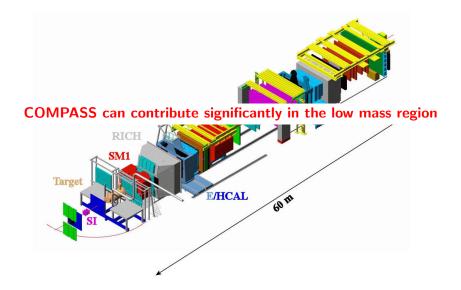
 $(s = 0, 1)$


• Isospin and G-Parity conservation: $\mathsf{G} = (-1)^{I+\ell+s}$

• Parity:
P =
$$(-1)^{(\ell+1)}$$

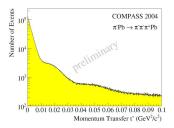
• Charge conjugation: $C = (-1)^{(\ell+s)}$

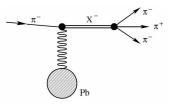
Quarkmodel and QCD

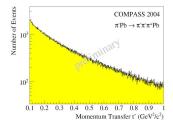

QCD allows states which are forbidden in the quarkmodel

Glueballs: gg, ggg Hybrids: ggq

Tetraquarks: $(q\overline{q})(q\overline{q})$

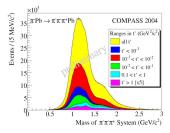

- Mixing of color neutral configurations with same quantum numbers
- leading $q\overline{q}$ term vanishes \Rightarrow exotic $J^{PC}: 0^{--}, 0^{+-}, 1^{-+}, ...$




Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

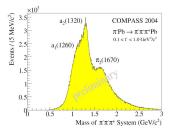
Diffractive Dissociation into 3π Final States

- $\pi^- + Pb \rightarrow \pi^-\pi^-\pi^+ + Pb$
- non-elastic but exclusive events
- target stays intact
- only momentum and angular momentum transfer to beam particle



Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

Invariant Mass of 3π System

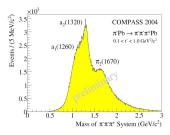


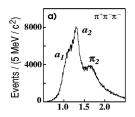
COMPASS

- $p_{\pi} = 190 \, GeV/c$
- 4M events in 3 days (full t range)
- 450k events in $0.1 < t' < 1.0 \ GeV^2/c^2$

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

Invariant Mass of 3π System



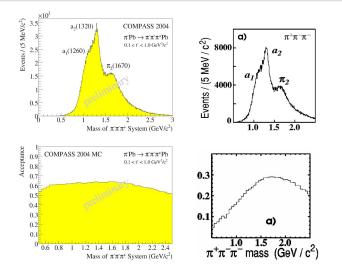

COMPASS

- $p_{\pi} = 190 \, GeV/c$
- 4M events in 3 days (full t range)
- 450k events in $0.1 < t' < 1.0 \ GeV^2/c^2$

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

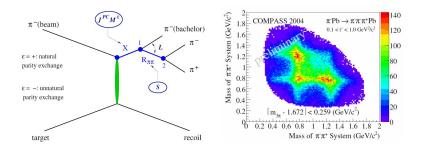
Invariant Mass of 3π System

COMPASS


- $p_{\pi} = 190 \, GeV/c$
- 4M events in 3 days (full t range)
- 450k events in $0.1 < t' < 1.0 \ GeV^2/c^2$

BNL852

- $p_{\pi} = 18 GeV/c$
- 250k events


Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

Invariant Mass of 3π System

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

Partial Wave Analysis - Isobar Model

PWA: more detailed informations on quantum numbers of resonances

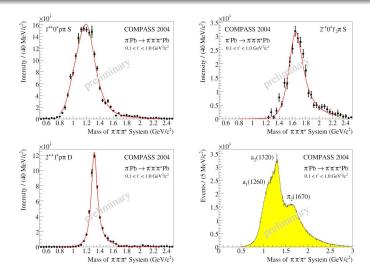
Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

PWA Technique

Illinois/Protvino/Munich Program - BNL/Munich Program

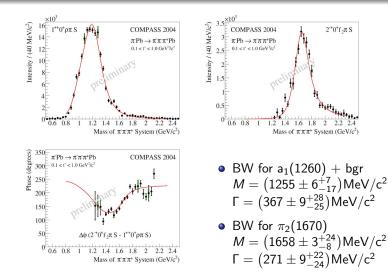
Mass-Independent PWA

$$\sigma_{indep}(\tau, m, t') = \sum_{\epsilon=\pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f_i^{\epsilon}(t') \psi_i^{\epsilon}(\tau, m) / \sqrt{\int \left| \psi_i^{\epsilon}(\tau', m) \right|^2 d\tau'} \right|^2$$

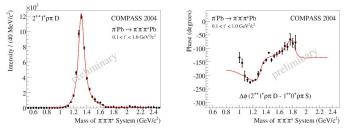

- Production amplitudes $\mathcal{T}^{\epsilon}_{ir}
 ightarrow$ extended maximum likelihood fit
- Decay amplitudes $\psi_i^{\epsilon}(\tau, m)$ (Zemach tensors, D functions)
- 41 partial waves $i = J^{PC} M^{\epsilon}[Y]L$
 - with $[Y] = (\pi\pi)_5, \rho(770), f_0(980), f_2(1270), \rho_3(1690)$
- Background wave

2 Mass-Dependent χ^2 fit to results of step 1

- 6 waves
- Parameterized by Breit-Wigner
- Coherent background for some waves


Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

Intensities of Major Waves

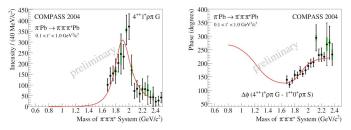

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

$a_1(1260)$ and $\pi_2(1670)$

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

$a_2(1320)$

• Two Breit Wigner functions required to describe phase motion


• BW1 for a₂(1320)

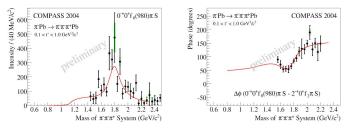
$$M = (1321 \pm 1^{+0}_{-7}) \text{MeV/c}^2$$

 $\Gamma = (110 \pm 2^{+2}_{-25}) \text{MeV/c}^2$

BW2 for a₂(1700): M = 1732MeV/c², Γ = 194MeV/c²(fixed PDG values)

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

$a_4(2040)$


• Constant width BW used for a₄(2040)(branching ratios not known)

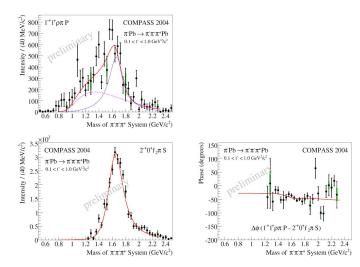
• BW parameters

$$M = (1885 \pm 13^{+50}_{-2}) \text{MeV/c}^2$$

 $\Gamma = (294 \pm 25^{+46}_{-19}) \text{MeV/c}^2$

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

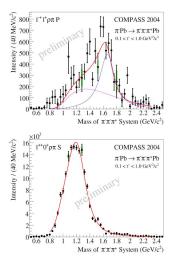
$\pi(1800)$


• Constant width BW used for $\pi(1800)$ and low-mass background

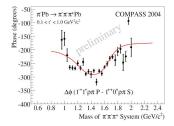
• BW parameters

$$M = (1785 \pm 9^{+12}_{-6}) \text{MeV/c}^2$$

 $\Gamma = (208 \pm 22^{+21}_{-37}) \text{MeV/c}^2$


Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

$J^{PC} = 1^{-+}$ Exotic Wave

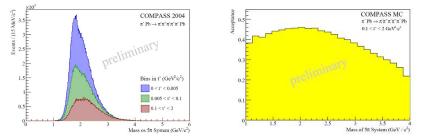


Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

$J^{PC} = 1^{-+}$ Exotic Wave

• BW parameters for $\pi_1(1600)$ $M = (1660 \pm 10^{+0}_{-64}) \text{MeV/c}^2$ $\Gamma = (269 \pm 21^{+42}_{-64}) \text{MeV/c}^2$

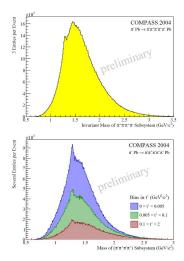
Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

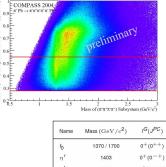

Diffractive Dissociation into 5π Final States

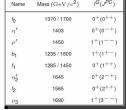
- Higher masses accessible
- many disputed states: $0^{-+}, 1^{++}, 2^{-+}, \dots$

Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

Invariant Mass of 5π System

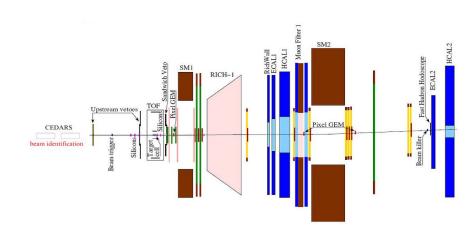

- Higher masses accessible
- many disputed states: $0^{-+}, 1^{++}, 2^{-+}, ...$
- $\pi^- Pb \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- Pb$




of (\mathbf{\pi} \mathbf{\pi} \

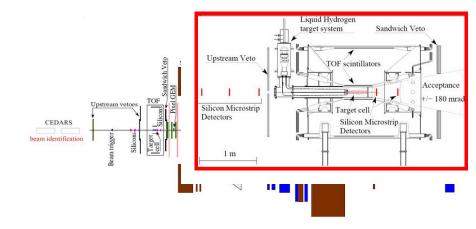
Diffractive Dissociation into 3π Final States Diffractive Dissociation into 5π Final States

4π Subsystem

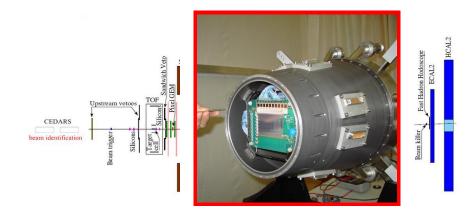


Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

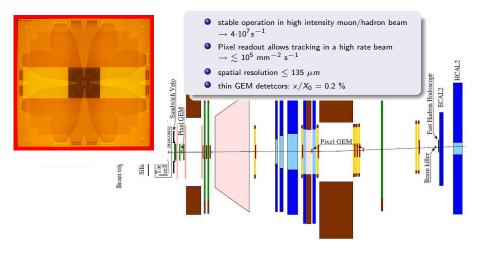
Spectrometer Upgrade 2008


Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

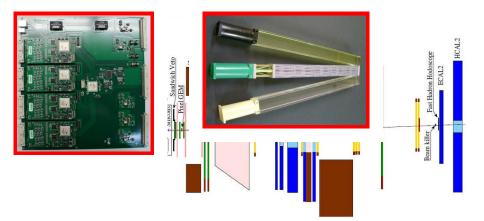
Spectrometer Upgrade 2008 - Beam Particle Identification


Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

Spectrometer Upgrade 2008 - Liquid Hydrogen Target - Proton Recoil Detector

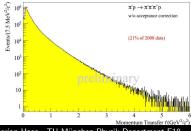

Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

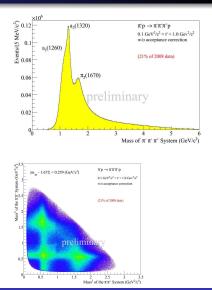
Spectrometer Upgrade 2008 - Target Region - Silicon Microstrip Detectors


Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

Spectrometer Upgrade 2008 - PixelGEM Detectors

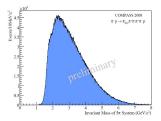
Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

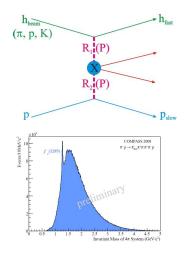

Spectrometer Upgrade 2008 - Electromagnetic Calorimeter


Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

Diffractive Dissociation into 3π Final States

- 190 GeV/c hadron beam \rightarrow 96% π^- , 3.5% K^- , 0.5% \overline{p}
- 40cm liquid hydrogen target
- 170000 π₁(1600) events expected

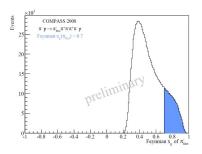

Meson Spectroscopy at COMPASS

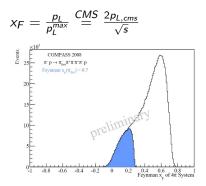

Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

Central Production in COMPASS

- non-elastic but exclusive events
- target stays intact

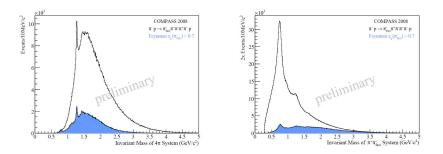
•
$$\pi^- p \rightarrow \pi^-_{fast} \pi^- \pi^+ \pi^- \pi^+ p$$




Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

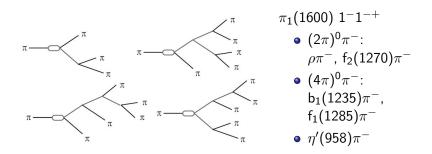
Central Production in COMPASS

Selection of centrally produced events:


 \Rightarrow Cut on Feynman x_F of π_{fast}^-

Spectrometer Upgrade Diffractive Dissociation into 3π Final States Central Production

Invariant Mass of Subsystems



- Pilot Run 2004
 - significant amount of data in few days of data taking
 - strong signal in exotic wave 1^{-+} at 1.7 GeV/c
- COMPASS 2008/2009
 - spectrometer upgrade: →CEDARS, liquid hydrogen target, RPD, additional Silicons, PixelGEMs, ECALs
 - Diffractive reactions: 10x BNL E852 statistics
 - Central reactions: 10x WA102 statistics
 - analysis on charged, neutral and kaonic final states
- two independent PWA programs

Backup

Florian Haas - TU München Physik Department E18 Meson Spectroscopy at COMPASS

Interesting Candidate

COMPASS has access to all of these decay modes

Wave Set of 2004 3π PWA

$J^{PC}M^{\epsilon}$	L	Isobar π	Thresh. [GeV]	J ^{PC} M [€]	L	lashan	Thursday (Op)
0-+0+	S	$f_0\pi$	1.40		-	Isobar π	Thresh. [GeV
0-+0+	S	$(\pi\pi)_{s}\pi$	-	2++1+	Р	$f_2 \pi$	1.50
0-+0+	P	$\rho\pi$	-	2++1+	D	$ ho\pi$	-
1-+1+	P	ρπ	-	3++0+	S	$\rho_3 \pi$	1.50
1++0+	s	$\rho\pi$	-	3++0+	P	$f_2 \pi$	1.20
1++0+	P	$f_2\pi$	1.20	3++0+	D	$\rho\pi$	1.50
1++0+	P	$(\pi\pi)_{s}\pi$	0.84	3++1+	S	$\rho_3 \pi$	1.50
1++0+	D	$\rho\pi$	1.30	3++1+	Р	$f_2 \pi$	1.20
1++1+	s	$\rho\pi$	-	3++1+	D	$\rho\pi$	1.50
1++1+	P	$f_2\pi$	1.40	4-+0+	F	$\rho\pi$	1.20
1++1+	P	$(\pi\pi)_{s}\pi$	1.40	4-+1+	F	$\rho\pi$	1.20
1++1+	D	$\rho\pi$	1.40	4++1+	F	f ₂ π	1.60
2-+0+	S	$f_2\pi$	1.20	4++1+	G	$\rho\pi$	1.64
2-+0+	P	$\rho\pi$	0.80	1-+0-	P		-
2-+0+	D	$f_2\pi$	1.50	1-+1-	P	$\rho\pi$	
2-+0+	D	$(\pi\pi)_{s}\pi$	0.80	1++1-	s	$\rho\pi$	-
2-+0+	F		1.20	2-+1-	S	$\rho\pi$	1 00
2-+1+	r S	$\rho\pi$		2 ⁺⁺ 0 ⁻	P	f ₂ π	1.20
2^{-+1^+}		f ₂ π	1.20			$f_2 \pi$	1.30
	P	$\rho\pi$	0.80	2++0-	D	$\rho\pi$	-
2-+1+	D	f ₂ π	1.50	2++1-	Р	f ₂ π	1.30
2-+1+	D	$(\pi\pi)_{S}\pi$	1.20	FLAT			
2-+1+	F	$\rho\pi$	1.20				