

Hadronic $b \rightarrow c$ decays at BABAR

Tae Min Hong

University of California, Santa Barbara
Representing the BABAR Collaboration

- Study of $B \rightarrow D^{(*)} p \bar{p}, D^{(*)} p \bar{p} \pi, D^{* *} p \bar{p} \pi \pi$
- Study of $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$and $D_{0}^{* 0}, D_{2}^{* 0}$

The 2009 Europhysics Conference on High Energy Physics
Krakow, Poland

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

PEP-II and BABAR

SLAC National Accelerator Laboratory

\sqrt{s}	fb^{-1}	Events
$\Upsilon(4 \mathrm{~S})$	433	$475 \mathrm{M} B \bar{B}$
Off res.	54	
$\Upsilon(3 \mathrm{~S})$	30	122 M
$\Upsilon(2 \mathrm{~S})$	14	110 M
Total	531	

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

BABAR has good p, E resolution, and particle id.

EM calorimeter 6580 CsI (TI) crystals

RPC / LST flux return (μ, K_{L})
Solenoid 1.5 T magnetic field

Cherenkov light detector 144 quartz bars, I 1000 PMTs
Drift chamber 40 layers
Silicon vertex tracker 5 layers, 2-sided strips

Study of baryonic B decays

$$
B \rightarrow D^{(*)} p \bar{p}, D^{(*)} p \bar{p} \pi, D^{(*)} p \bar{p} \pi \pi
$$

3-body decay

Using 455M $B \bar{B}$ pairs

> | PRL 862732 |
| :--- |
| PRL 89 I $51802(01)$ |
| PRD 74051 (02) |
| 106$)$ |

- Do these br. fractions follow a pattern?
- Do these show interesting decay dynamics?

Theory references

BF is large! Dunietz............... PRD 580556
(98)

Curr. model Chua, Hou, Tsai.. PRD 65034003 (02)
Pole model Cheng, Yang........ PRD 66094009 (02)
Fragment. Rosner................ PRD 68014004 (03)
5-quark
4-quark Jaffe,Wilczek....... PRL 9 I 232003 (03)

Pole model Cheng
Pole model Cheng, et al........ PRD 78054016 (08)

Decays to D^{*}	Body	BF $\left(10^{-4}\right)$
$\bar{B}^{0} \rightarrow D^{0} p \bar{p}$ $\bar{B}^{0} \rightarrow D^{* 0} p \bar{p}$	3	1.1 ± 0.1
		1.0 ± 0.1
$\bar{B}^{0} \rightarrow D^{+} p \bar{p} \pi^{-}$		
$\bar{B}^{0} \rightarrow D^{*+} p \bar{p} \pi^{-}$		
$B^{-} \rightarrow D^{0} p \bar{p} \pi^{-}$	4	3.4 ± 0.3
		4.8 ± 0.5
$B^{-} \rightarrow D^{* 0} p \bar{p} \pi^{-}$		

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR
Four modes: $\bar{B}^{0} \rightarrow D^{(*)} p \bar{p}, D^{(*)} p \bar{p} \pi$
Instead of $\mathrm{m}=\sqrt{E_{B}^{2}-\mathbf{p}_{B}^{2}}$, utilize beam energy

Show $D^{* 0} \rightarrow D^{0} \pi^{0} \quad D^{0} \rightarrow K^{-} \pi^{+}$

$$
D^{*+} \rightarrow D^{0} \pi^{+} D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}
$$

For the study, also reconstruct

$$
K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{-} \pi^{+}
$$

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

BABAR event display of $B^{0} \rightarrow \bar{D}^{0} p \bar{p}$
 $$
\longleftrightarrow^{P P} K^{+} \pi^{-}
$$

The PEP-II/BaBar B-Factory Run: 40586
Timestamp: 7f:4fff7fff:2cf985/36e9e1eb:Q
Date Taken: Mon Sep 29 05:08:16.177022000 2003 PDT Her: 8.995 GeV , LER: 3.110 GeV

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

Six NEW modes: $B \rightarrow D^{(*)} p \bar{p} \pi, D^{(*)} p \bar{p} \pi \pi$

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

Branching fractions

N-body	Decay	BF \pm stat \pm syst (10^{-4})	$\mathrm{N}_{\text {sig }}$	$\mathrm{BF}\left(10^{-4}\right)$5		$\square \mathrm{B0}$ to D
3	$\bar{B}^{0} \rightarrow D^{0} p \bar{p}$	$1.02 \pm 0.04 \pm 0.05$	1230			B0 to D* B- to D
	$\bar{B}^{0} \rightarrow D^{* 0} p \bar{p}$	$0.97 \pm 0.07 \pm 0.08$	353			B- to D*
4	$\bar{B}^{0} \rightarrow D^{+} p \bar{p} \pi^{-}$	$3.32 \pm 0.10 \pm 0.27$	1816	4		
	$\bar{B}^{0} \rightarrow D^{*+} p \bar{p} \pi^{-}$	$4.55 \pm 0.16 \pm 0.37$	1371	3		
	$B^{-} \rightarrow D^{0} p \bar{p} \pi^{-}$	$3.72 \pm 0.11 \pm 0.23$	1871			
	$B^{-} \rightarrow D^{* 0} p \bar{p} \pi^{-}$	$3.73 \pm 0.17 \pm 0.40$	366			3.0
5	$\bar{B}^{0} \rightarrow D^{0} p \bar{p} \pi^{-} \pi^{+}$	$2.99 \pm 0.21 \pm 0.44$	3550	01.0		1.71 .9
	$\bar{B}^{0} \rightarrow D^{* 0} p \bar{p} \pi^{-} \pi^{+}$	$1.91 \pm 0.36 \pm 0.30$	1153	. 3.0		
	$B^{-} \rightarrow D^{+} p \bar{p} \pi^{-} \pi^{-}$	$1.66 \pm 0.13 \pm 0.27$	475	3 body	4 body	5 body

In red are new observations . This column gives the signal sample size

Why is 4-body BF so large?
Let's look at kinematic distributions.

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

3-body decays

5-body decays

This and other 5-body distributions are similar to phase space expectations.

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

4-body decay $\bar{B}^{0} \rightarrow D^{+} p \pi^{-}$
 Opposite-sign

Fit opposite-sign sample with Use like-sign sample to get
Background pdf + floating B-W Background pdf only

Fit opposite-sign sample with Background pdf +4 known N^{*}

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

BF \& Dalitz plot study

of $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$

D_{J} states test HQET predictions

Isgur,Wise..PL-B 232 ||3 (89) Neubert..... PR 245259 (94)
chg J^{P} allows $D_{0,2}^{*} \rightarrow D \pi$, not D_{1}, D_{1}^{\prime} $D_{0}^{* 0}$ not yet confirmed in PDG J
\longleftarrow

Expt.	$\mathrm{m}\left(D_{0}^{* 0}\right)$		
Focus, $\gamma \mathrm{A}$	$2407 \pm 21 \pm 35$	PL-B 586 \|	(04)
Belle, $60 \mathrm{fb}^{-1}$	$2308 \pm 17 \pm 32$	PRD 69 \| I2002 (04)	
This, $343 \mathrm{fb}^{-1}$	$2297 \pm 8 \pm 20$	PRD 79 I I2004 (09)	

MeV/cs $\operatorname{stat}^{2 L^{2 t}}$

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR

$B^{-} \rightarrow D^{+} \pi^{-} \pi^{-} \quad$ BF \& Dalitz plot analysis

Branching fraction analysis

	BF $\left(10^{-3}\right)$
This $343 \mathrm{fb}^{-1}$	$1.08 \pm 0.03 \pm 0.05$
Belle $60 \mathrm{fb}^{-1}$	$1.02 \pm 0.04 \pm 0.15$

Dalitz plot analysis

Use 2-D isobar model for signal B

$$
\mathfrak{M}=\sum_{\text {Res }} e^{i \phi} R+\sum_{\text {Nonres }} e^{i \varphi} N
$$

Breit-Wigner \times angular for Nonresonant D_{J} \& Off-shell $D^{*}(2007) \quad B$ signal $B^{*}(5325)$

Tae Min Hong, UCSB, Hadronic $b \rightarrow c$ decays at BABAR
D_{J} resonances in $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$

Summary

- Study of $B \rightarrow D^{(*)} p \bar{p}, D^{(*)} p \bar{p} \pi, D^{(*)} p \bar{p} \pi \pi$

BF of ten decays (six are new observations)
BF pattern shows 3-body < 5-body < 4-body

3-body:Threshold enhancement $D^{(*)} p, p \bar{p}$
5-body: Similar to phase space expectations 4-body: Narrow $p \pi^{-}$peak near $1.5 \mathrm{GeV} / \mathrm{c}^{2}$

PRD in preparation

- Study of $B^{-} \rightarrow D^{+} \pi^{-} \pi^{-}$and $D_{0}^{* 0}, D_{2}^{* 0}$

BF is 3 x improvement of prev. result Measure $D_{0}^{* 0}, D_{2}^{* 0}$ mass, width, \& spin Confirmation of the $D_{0}^{* 0}$ state

