Diffractive charm production from the dipole model analysis

Agnieszka Łuszczak
Institute of Nuclear Physics PAN, Cracow, Poland

in collaboration with Krzysztof Golec-Biernat

Outline

- Dipole model approach - GBW and CGC parametrizations
- Diffractive structure functions in dipole models
- Diffractive charm quark production
- Comparision with HERA data
- Conclusions

Dipole model of DIS

- Dipole picture of DIS at small x in the proton rest frame

r - dipole size
z - longitudinal momentum fraction of the quark/antiquark
- Factorization: dipole formation + dipole interaction

$$
\sigma^{\gamma p}=\frac{4 \pi^{2} \alpha_{e m}}{Q^{2}} F_{2}=\sum_{f} \int d^{2} r \int_{0}^{1} d z\left|\Psi^{\gamma}\left(r, z, Q^{2}, m_{f}\right)\right|^{2} \hat{\sigma}(r, x)
$$

- Dipole-proton interaction $\hat{\sigma}(r, x)$ is parameterized.

GBW parametrization

(Golec-Biernat Wusthoff,99)

- GBW parametrization

$$
\hat{\sigma}(r, x)=\sigma_{0}\left(1-\exp \left(-r^{2} / R_{s}^{2}\right)\right), \quad \quad R_{s}^{2}=4 \cdot\left(x / x_{0}\right)^{\lambda} \mathrm{Ge} V^{2}
$$

- The dipole scattering amplitude in such a case reads

$$
\hat{N}(\mathbf{r}, \mathbf{b}, x)=\theta\left(b_{0}-b\right)\left(1-\exp \left(-r^{2} / R_{s}^{2}\right)\right)
$$

where

$$
\hat{\sigma}(r, x)=2 \int d^{2} b \hat{N}(\mathbf{r}, \mathbf{b}, x)
$$

- Parameters b_{0}, x_{0} and λ from fits of scattering amplitude to F_{2} data

$$
\lambda=0.288 \quad x_{0}=4 \cdot 10^{-5} \quad \sigma_{0}=2 \pi b_{0}^{2}=29 \mathrm{mb}
$$

CGC parametrization

(Iancu, Itakura, Munier, Soyez 04-07)

- The dipole scattering amplitude in this parametrization

$$
\hat{N}(\mathbf{r}, \mathbf{b}, x)=S(\mathbf{b}) N(\mathbf{r}, x) \quad S(\mathbf{b})=\exp \left(-b^{2} /\left(2 B_{d}\right)\right)
$$

- Dipole cross section is given by $\left(Q_{s}=1 / R_{s}\right)$

$$
\begin{aligned}
& \hat{\sigma}(\mathbf{r}, x)=4 \pi B_{d} N(\mathbf{r}, x) . \\
& N(\mathbf{r}, x)=\left\{\begin{array}{lll}
N_{0}\left(\frac{r Q_{s}}{2}\right)^{2 \gamma_{s}} \mathrm{e}^{\frac{2 \ln ^{2}\left(r Q_{s} / 2\right)}{\kappa \lambda \ln (x)}} & \text { for } & r Q_{s} \leq 2 \\
1-\mathrm{e}^{-4 \alpha \ln ^{2}\left(\beta r Q_{s}\right)} & \text { for } & r Q_{s}>2
\end{array}\right.
\end{aligned}
$$

- Parameters $\lambda, x_{0}, N_{0}, B_{d}$ are equal to

$$
\lambda=0.22, \quad x_{0}=1.63 \cdot 10^{-5}, \quad N_{0}=0.7, \quad B_{d}=6 \mathrm{GeV}^{-2}
$$

Comparison of GBW with CGC

- The same normalization.
- In GBW from a fit to F_{2} data: $\sigma_{0}=29 \mathrm{mb}$.
- In CGC from measured diffractive slope at HERA: $B_{d}=6 \mathrm{GeV}^{-2}$

$$
\sigma_{0}=4 \pi B_{d}=29 \mathrm{mb}
$$

DIS diffraction

- Kinematic variables

$$
x_{\mathbb{P}}=\frac{M^{2}+Q^{2}}{W^{2}+Q^{2}}, \quad \beta=\frac{Q^{2}}{Q^{2}+M^{2}}
$$

- Diffractive structure functions

$$
F_{2}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right) \quad F_{L}^{D}\left(x_{\mathbb{P}}, \beta, Q^{2}\right)
$$

DIS diffraction in dipole models

- Successful description with two component diffractive state: $q \bar{q}$ and $q \bar{q} g$ from photon with transverse and longitudinal polarization T, L

- Diffractive structure functions are given by

$$
\begin{aligned}
& F_{2}^{D}=F_{T}^{(q \bar{q})}+F_{L}^{(q \bar{q})}+F_{T}^{(q \bar{q} g)} \\
& F_{L}^{D}=F_{L}^{(q \bar{q})}
\end{aligned}
$$

Diffractive structure functions: $q \bar{q}$ component

- The $q \bar{q}$ components from T and L polarised photons are given by

$$
\begin{aligned}
x_{\mathbb{P}} F_{T}^{(q \bar{q})} & =\frac{3 Q^{4}}{64 \pi^{4} \beta B_{d}} \sum_{f} e_{f}^{2} \int_{z_{f}}^{1 / 2} d z z(1-z) \\
& \times\left\{\left[z^{2}+(1-z)^{2}\right] Q_{f}^{2} \phi_{1}^{2}+m_{f}^{2} \phi_{0}^{2}\right\} \\
x_{\mathbb{P}} F_{L}^{(q \bar{q})} & =\frac{3 Q^{6}}{16 \pi^{4} \beta B_{d}} \sum_{f} e_{f}^{2} \int_{z_{f}}^{1 / 2} d z z^{3}(1-z)^{3} \phi_{0}^{2}
\end{aligned}
$$

- The functions ϕ_{i} take the following form for $i=0,1$

$$
\phi_{i}=\int_{0}^{\infty} d r r K_{i}\left(Q_{f} r\right) J_{i}\left(k_{f} r\right) \hat{\sigma}\left(r, x_{\mathbb{P}}\right)
$$

- In diffractive DIS substitution in $\hat{\sigma}\left(r, x_{\mathbb{P}}\right)$

$$
x=\frac{Q^{2}}{Q^{2}+W^{2}} \quad \rightarrow \quad x_{\mathbb{P}}=\frac{Q^{2}+M^{2}}{Q^{2}+W^{2}}
$$

Diffractive structure functions: $q \bar{q} g$ component

- The $q \bar{q} g$ component from transverse photons with massless quarks

$$
\begin{aligned}
x_{\mathbb{P}} F_{T}^{(q \bar{q} g)} & =\frac{81 \beta \alpha_{s}}{512 \pi^{5} B_{d}} \sum_{f} e_{f}^{2} \int_{\beta}^{1} \frac{d z}{(1-z)^{3}}\left[\left(1-\frac{\beta}{z}\right)^{2}+\left(\frac{\beta}{z}\right)^{2}\right] \\
& \times \int_{0}^{(1-z) Q^{2}} d k^{2} \log \left(\frac{(1-z) Q^{2}}{k^{2}}\right) \phi_{2}^{2}\left(x_{\mathbb{P}}, z, k\right)
\end{aligned}
$$

- Since $k_{T q} \approx k_{T \bar{q}} \gg k_{T g}$ we have a gluon dipole and the GBW dipole cross section is given by

$$
\hat{\sigma}\left(r, x_{\mathbb{P}}\right) \equiv \hat{\sigma}_{g g}=\sigma_{0}\left(1-\mathrm{e}^{-\left(C_{A} / C_{F}\right) r^{2} Q_{s}^{2}\left(x_{\mathbb{P}}\right) / 4}\right)
$$

- Color factor modyfication: $C_{A} / C_{F}=9 / 4$ for $N_{c}=3$

Summary of the three contributions to F_{2}^{D}

$$
\beta=\frac{Q^{2}}{Q^{2}+M^{2}}
$$

- $q \bar{q}$ from transverse photons for $\beta \approx 1 / 2$
- $q \bar{q}$ from longitudinal photons for $\beta \approx 1$ (for small diffractive mass)
- $q \bar{q} g$ for $\beta \ll 1$ (for large diffractive mass)

The comparison for $\sigma_{r}^{D}=F_{2}^{D}-\frac{y^{2}}{1+(1-y)^{2}} F_{L}^{D}$: ZEUS 2009

Diffractive charm production: only $c \bar{c}$

- Standard dipole model formula with $m_{c}=1.4 \mathrm{GeV}$ and $e_{c}=2 / 3$

$$
\begin{aligned}
x_{\mathbb{P}} F_{T}^{(c \bar{c})} & =\frac{3 Q^{4} e_{c}^{2}}{64 \pi^{4} \beta B_{d}} \int_{z_{c}}^{1 / 2} d z z(1-z) \\
& \times\left\{\left[z^{2}+(1-z)^{2}\right] Q_{c}^{2} \phi_{1}^{2}+m_{c}^{2} \phi_{0}^{2}\right\}
\end{aligned}
$$

with $z_{c}=\left(1-\sqrt{1-4 m_{c}^{2} / M^{2}}\right) / 2$

- Minimal diffractive mass $M_{\text {min }}^{2}=4 m_{c}^{2}$ gives maximal value of β

$$
\beta_{\max }=\frac{Q^{2}}{Q^{2}+4 m_{c}^{2}}<1
$$

- Pure $c \bar{c}$ contributions is very small.

Exclusive $c \bar{c}$ contribution

- Exclusive $c \bar{c}$ production is negligible.

Diffractive charm production: $c \bar{c} X$ state

- We use collinear factorisation formula for $c \bar{c} X$ diffractive production

$$
F_{2, L}^{D(c \bar{c} X)}=2 \beta e_{c}^{2} \frac{\alpha_{s}\left(\mu_{c}^{2}\right)}{2 \pi} \int_{a \beta}^{1} \frac{d \beta^{\prime}}{\beta^{\prime}} C_{2, L}\left(\frac{\beta}{\beta^{\prime}}, \frac{m_{c}^{2}}{Q^{2}}\right) g^{D}\left(x_{\mathbb{I}}, \beta^{\prime}, \mu_{c}^{2}\right)
$$

where $a=1+4 m_{c}^{2} / Q^{2}$ and the factorization scale $\mu_{c}^{2}=4 m_{c}^{2}$.

- The standard gluon distribution is replaced by the diffractive gluon distribution $g^{D}\left(x_{\mathbb{P}}, \beta^{\prime}, \mu_{c}^{2}\right)$.

Diffractive gluon distribution

- Gluon from the $q \bar{q} g$ component of the dipole model (blue lines)
- Gluon from DGLAP fits to HERA diffractive data (red lines)

Diffractive charm production: $c \bar{c} X$

- $c \bar{c} X$ contributes up to 30% to F_{2}^{D} for large diffractive mass (small β).

Comparison with HERA data

- Reduced cross section

$$
\sigma_{r}^{D(\text { charm })}=F_{2}^{D(\text { charm })}-\frac{y^{2}}{1+(1-y)^{2}} F_{L}^{D(\text { charm })}
$$

Fractional charm contribution

- Fractional contribution $f^{D(\text { charm })}=\sigma_{r}^{D(\text { charm })} / \sigma_{r}^{D}$ of the diffractive charm to total diffractive cross section.
- Up to $20-30 \%$.

Conclusions

- Good overall agreement with the diffractive HERA data on F_{2}^{D}.
- For small β curves below the data - more complicated diffractive state than $q \bar{q} g$ is necessary.

- Charm contribution is important for small β (large diffractive mass) contibutes to F_{2}^{D} up to $20-30 \%$.

