Prospect for precision measurements of $M_{W^+} - M_{W^-} \& M_W$ at the LHC (Shortcuts revisited)

Florent Fayette^(a), Witold Krasny^(a), Wiesław Płaczek^{(b),(a)}, Katarzyna Rejzner^(b) & Andrzej Siódmok^{(b),(a)}

^(a)LPNHE, Universités de Paris VI, Paris VII et IN2P3, Paris, ^(b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Cracow.

EPS 2009 – Kraków 2009 July 17

1. Introduction

• Tevatron :

▶ Precision on M_W achievable *because* $W^+ \iff^{CP} W^-$ in $p\bar{p}$ collisions

• LHC:

► Announce $\delta_{M_W}^{(\text{sys.})} \sim 10 \text{ MeV}, \dots$ but forgot $W^+ \iff W^-$ in p p collisions

-Our prospect-

Dedicated systematic-robust strategies/observables for $M_{W^+} - M_{W^-} \& M_W p_{T,l}$ -based measurements

• Tevatron :

▶ Precision on M_W achievable *because* $W^+ \iff^{CP} W^-$ in $p\bar{p}$ collisions

• LHC:

► Announce $\delta_{M_W}^{(\text{sys.})} \sim 10 \text{ MeV}, \dots$ but forgot $W^+ \iff W^-$ in p p collisions

-Our prospect-

Dedicated systematic-robust strategies/observables for $M_{W^+} - M_{W^-} \& M_W p_{T,l}$ -based measurements

• Tevatron :

▶ CDF II [Aaltonen *et al.*, Phys. Rev. D77, 112001 (2008)]

$$\begin{array}{lll} W \to \mu \, \nu_\mu & M_{W^+} - M_{W^-} = 0.286 \ \pm \ 0.152 \, {\rm GeV} \\ W \to e \, \nu_e & M_{W^+} - M_{W^-} = 0.257 \ \pm \ 0.117 \, {\rm GeV} \\ W \to \mu \, \nu_\mu, \, e \, \nu_e & M_W = 80.413 \ \pm \ 0.048 \, {\rm GeV} \end{array}$$

▶ Precision on M_W achievable because $W^+ \iff W^-$ in $p\bar{p}$ collisions

• LHC:

► Announce $\delta_{M_W}^{(sys.)} \sim 10 \,\text{MeV}, \dots$ but forgot $W^+ \iff W^-$ in $p \, p$ collisions

-Our prospect-

Dedicated systematic-robust strategies/observables for $M_{W^+} - M_{W^-} \& M_W p_{T,l}$ -based measurements

- Tevatron :
 - ▶ CDF II [Aaltonen *et al.*, Phys. Rev. D77, 112001 (2008)]

$$\begin{array}{lll} W \to \mu \, \nu_\mu & M_{W^+} - M_{W^-} = 0.286 \ \pm \ 0.152 \, {\rm GeV} \\ W \to e \, \nu_e & M_{W^+} - M_{W^-} = 0.257 \ \pm \ 0.117 \, {\rm GeV} \\ W \to \mu \, \nu_\mu, \, e \, \nu_e & M_W = 80.413 \ \pm \ 0.048 \, {\rm GeV} \end{array}$$

▶ Precision on M_W achievable because $W^+ \iff W^-$ in $p\bar{p}$ collisions

• LHC:

► Announce $\delta_{M_W}^{(\text{sys.})} \sim 10 \text{ MeV}, \dots$ but forgot $W^+ \stackrel{CP}{\iff} W^-$ in p p collisions

-Our prospect-

Dedicated systematic-robust strategies/observables for $M_{W^+} - M_{W^-} \& M_W p_{T,l}$ -based measurements

- Tevatron :
 - ▶ CDF II [Aaltonen *et al.*, Phys. Rev. D77, 112001 (2008)]

$$\begin{array}{lll} W \to \mu \, \nu_\mu & M_{W^+} - M_{W^-} = 0.286 \ \pm \ 0.152 \, {\rm GeV} \\ W \to e \, \nu_e & M_{W^+} - M_{W^-} = 0.257 \ \pm \ 0.117 \, {\rm GeV} \\ W \to \mu \, \nu_\mu, \, e \, \nu_e & M_W = 80.413 \ \pm \ 0.048 \, {\rm GeV} \end{array}$$

▶ Precision on M_W achievable because $W^+ \iff W^-$ in $p\bar{p}$ collisions

• LHC:

► Announce $\delta_{M_W}^{(\text{sys.})} \sim 10 \text{ MeV}, \dots$ but forgot $W^+ \stackrel{CP}{\iff} W^-$ in p p collisions

-Our prospect-

Dedicated systematic-robust strategies/observables for $M_{W^+} - M_{W^-} \& M_W p_{T,l}$ -based measurements

- Tevatron :
 - ▶ CDF II [Aaltonen *et al.*, Phys. Rev. D77, 112001 (2008)]

$$\begin{array}{lll} W \to \mu \, \nu_\mu & M_{W^+} - M_{W^-} = 0.286 \ \pm \ 0.152 \, {\rm GeV} \\ W \to e \, \nu_e & M_{W^+} - M_{W^-} = 0.257 \ \pm \ 0.117 \, {\rm GeV} \\ W \to \mu \, \nu_\mu, \, e \, \nu_e & M_W = 80.413 \ \pm \ 0.048 \, {\rm GeV} \end{array}$$

▶ Precision on M_W achievable because $W^+ \iff W^-$ in $p\bar{p}$ collisions

• LHC:

► Announce $\delta_{M_W}^{(\text{sys.})} \sim 10 \text{ MeV}, \dots$ but forgot $W^+ \stackrel{CP}{\iff} W^-$ in p p collisions

-Our prospect-

Dedicated systematic-robust strategies/observables for $M_{W^+} - M_{W^-} \& M_W p_{T,l}$ -based measurements

W^{\pm} production in $p \bar{p} \& p p$ collisions

 $M_{W^+} - M_{W^-}, M_W$ (4/14) $\square 1.$ Introduction

W^{\pm} production in $p \bar{p} \& p p$ collisions

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from PDFs
 - ▶ M_W measurement? Two solutions:

$$(1) \ M_{W^+} \ \& \ M_W$$

 $\stackrel{M_{W^+}-M_{W^-},\ M_W}{\sqsubseteq} 1. \ \text{Introduction}$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from PDFs
 - ▶ M_W measurement? Two solutions:

$$(1) \ M_{W^+} \ \& \ M_W$$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from PDFs
 - ▶ M_W measurement? Two solutions:

$$(1) \ M_{W^+} \ \& \ M_W$$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from *PDFs*
 - ▶ M_W measurement? Two solutions:
 - $(1) \ M_{W^+} \ \& \ M_W$
 - (2) $(M_{W^+} + M_{W^-}) \& (M_{W^+} M_{W^-})$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

Lessons

Loss of symmetry

- Stronger dependencies from PDFs
- M_W measurement? Two solutions:

$$(1) \hspace{0.1in} M_{W^+} \hspace{0.1in} \& \hspace{0.1in} M_W$$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from PDFs
 - \blacktriangleright M_W measurement? Two solutions:

$$(1) \hspace{0.1in} M_{W^+} \hspace{0.1in} \& \hspace{0.1in} M_W$$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from PDFs
 - ▶ M_W measurement? Two solutions :

(1)
$$M_{W^+} \& M_{W^-}$$

W^{\pm} decay for $p \bar{p} \& p p$ collisions

Charge asymmetry at the LHC = $\bar{q} < q \otimes p_{T,W} \otimes V - A$

- Lessons
 - Loss of symmetry
 - Stronger dependencies from PDFs
 - ▶ M_W measurement? Two solutions :

(1)
$$M_{W^+} \& M_{W^-}$$

(2) $(M_{W^+} + M_{W^-}) \& (M_{W^+} - M_{W^-})$

2. $M_{W^+} - M_{W^-} \& M_W$ at the LHC

▶ Energy Scale (ES)

- $\blacktriangleright (\varepsilon_{l^+} + \varepsilon_{l^-}) \leftarrow J/\Psi, \Upsilon, Z$
- $(\varepsilon_{l^+} \varepsilon_{l^-}) \nleftrightarrow W^+, W^-$ **NEW**!
- ▶ Track parameter reconstruction

• Phenomenology :

- Quarks $\langle k_T \rangle$
- ▶ PDF (global)
- $\blacktriangleright u^{(v)} d^{(v)}$
- $\triangleright s-c$
- $\blacktriangleright b (M_W)$

• Analysis:

- Monte Carlo: WINHAC¹ ($W \to e \nu_e, \mu \nu_\mu$), ZINHAC ($Z \to e^+e^-, \mu^+\mu^-$)
- ► $L = 10 \text{ fb}^{-1}$, ATLAS tracker (*i.e.* $p_{T,l} > 20 \text{ GeV } \& |\eta_l| < 2.5$)
- $M_{W^+} \pm M_{W^-} \rightarrow \text{Template method } (\chi^2)$

▶ Energy Scale (ES)

- $\blacktriangleright \quad (\varepsilon_{l^+} + \varepsilon_{l^-}) \leftarrow J/\Psi, \ \Upsilon, \ Z$
- $(\varepsilon_{l^+} \varepsilon_{l^-}) \nleftrightarrow W^+, W^-$ **NEW!**
- ▶ Track parameter reconstruction

• Phenomenology :

- Quarks $\langle k_T \rangle$
- ▶ PDF (global)
- $\blacktriangleright u^{(v)} d^{(v)}$
- $\triangleright s-c$
- $\blacktriangleright b (M_W)$

• Analysis:

- Monte Carlo: WINHAC¹ ($W \to e \nu_e, \mu \nu_\mu$), ZINHAC ($Z \to e^+e^-, \mu^+\mu^-$)
- ► $L = 10 \text{ fb}^{-1}$, ATLAS tracker (*i.e.* $p_{T,l} > 20 \text{ GeV } \& |\eta_l| < 2.5$)
- $M_{W^+} \pm M_{W^-} \rightarrow \text{Template method } (\chi^2)$

▶ Energy Scale (ES)

- $\blacktriangleright \quad (\varepsilon_{l^+} + \varepsilon_{l^-}) \leftarrow J/\Psi, \ \Upsilon, \ Z$
- $(\varepsilon_{l^+} \varepsilon_{l^-}) \nleftrightarrow W^+, W^- \mathbf{NEW!}$
- Track parameter reconstruction

• Phenomenology:

- Quarks $\langle k_T \rangle$
- ▶ PDF (global)
- $\blacktriangleright \ u^{(\mathbf{v})} d^{(\mathbf{v})}$
- $\blacktriangleright s-c$
- $\blacktriangleright b (M_W)$

• Analysis:

- Monte Carlo: WINHAC¹ ($W \to e \nu_e, \mu \nu_\mu$), ZINHAC ($Z \to e^+e^-, \mu^+\mu^-$)
- ► $L = 10 \text{ fb}^{-1}$, ATLAS tracker (*i.e.* $p_{T,l} > 20 \text{ GeV } \& |\eta_l| < 2.5$)
- $M_{W^+} \pm M_{W^-} \rightarrow \text{Template method } (\chi^2)$

▶ Energy Scale (ES)

- $\blacktriangleright \quad (\varepsilon_{l^+} + \varepsilon_{l^-}) \leftarrow J/\Psi, \ \Upsilon, \ Z$
- $(\varepsilon_{l^+} \varepsilon_{l^-}) \nleftrightarrow W^+, W^- \mathbf{NEW!}$
- Track parameter reconstruction

• Phenomenology:

- Quarks $\langle k_T \rangle$
- ▶ PDF (global)
- ► $u^{(v)} d^{(v)}$ NEW!
- ► s-c **NEW!**
- $\blacktriangleright b (M_W) \qquad \mathbf{NEW!}$

• Analysis:

- Monte Carlo: WINHAC¹ ($W \to e \nu_e, \mu \nu_\mu$), ZINHAC ($Z \to e^+e^-, \mu^+\mu^-$)
- ► $L = 10 \text{ fb}^{-1}$, ATLAS tracker (*i.e.* $p_{T,l} > 20 \text{ GeV } \& |\eta_l| < 2.5$)
- $M_{W^+} \pm M_{W^-} \rightarrow \text{Template method } (\chi^2)$

▶ Energy Scale (ES)

- $\blacktriangleright \quad (\varepsilon_{l^+} + \varepsilon_{l^-}) \leftarrow J/\Psi, \ \Upsilon, \ Z$
- $(\varepsilon_{l^+} \varepsilon_{l^-}) \nleftrightarrow W^+, W^-$ **NEW!**
- Track parameter reconstruction

• Phenomenology:

- Quarks $\langle k_T \rangle$
- ▶ PDF (global)
- ► $u^{(v)} d^{(v)}$ NEW!
- ► s-c **NEW!**
- $\blacktriangleright b (M_W) \qquad \mathbf{NEW!}$

• Analysis:

- Monte Carlo: WINHAC¹ ($W \to e \nu_e, \mu \nu_\mu$), ZINHAC ($Z \to e^+e^-, \mu^+\mu^-$)
- ► $L = 10 \text{ fb}^{-1}$, ATLAS tracker (*i.e.* $p_{T,l} > 20 \text{ GeV } \& |\eta_l| < 2.5$)
- $M_{W^+} \pm M_{W^-} \rightarrow \text{Template method } (\chi^2)$

▶ Energy Scale (ES)

- $\blacktriangleright \quad (\varepsilon_{l^+} + \varepsilon_{l^-}) \leftarrow J/\Psi, \ \Upsilon, \ Z$
- $(\varepsilon_{l^+} \varepsilon_{l^-}) \nleftrightarrow W^+, W^- \mathbf{NEW!}$
- Track parameter reconstruction

• Phenomenology:

- Quarks $\langle k_T \rangle$
- ▶ PDF (global)
- ► $u^{(v)} d^{(v)}$ NEW!
- ► s-c **NEW!**
- $\blacktriangleright b(M_W)$ **NEW!**
- Analysis:
 - ▶ Monte Carlo: WINHAC¹ ($W \to e \nu_e, \mu \nu_\mu$), ZINHAC ($Z \to e^+e^-, \mu^+\mu^-$)
 - ► $L = 10 \text{ fb}^{-1}$, ATLAS tracker (*i.e.* $p_{T,l} > 20 \text{ GeV } \& |\eta_l| < 2.5$)
 - $M_{W^+} \pm M_{W^-} \rightarrow \text{Template method } (\chi^2)$

Size of the main and new systematic errors

- $M_{W^+} M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$
- $M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z}\right)$

Systematic	$\delta_{M_{W^+}-M_{W^-}}^{(\text{sys.})} \text{ [MeV]}$	$\delta_{M_W}^{(\mathrm{sys.})}$ [MeV]

 \mathbf{ES}

 $u^{(\mathbf{v})} - d^{(\mathbf{v})}$

Size of the main and new systematic errors

- $M_{W^+} M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$
- $M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z} \right)$

	Systematic	$\delta_{M_{W^+} - M_{W^-}}^{(\text{sys.})}$ [MeV]	$\delta_{M_W}^{(\mathrm{sys.})}$ [MeV]
ES	$\varepsilon_{l^+}=+\varepsilon_{l^-}=0.5\%$		
10	$\varepsilon_{l^+}=-\varepsilon_{l^-}=0.5\%$		

 $u^{(\mathbf{v})} - d^{(\mathbf{v})}$

Size of the main and new systematic errors

- $M_{W^+} M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$
- $M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z} \right)$

	Systematic	$\delta^{(m sys.)}_{M_{W^+} - M_{W^-}}$ [MeV]	$\delta_{M_W}^{(\mathrm{sys.})}$ [MeV]
ES	$\varepsilon_{l^+}=+\varepsilon_{l^-}=0.5\%$	7	200
10	$\varepsilon_{l^+} = -\varepsilon_{l^-} = 0.5\%$	-550	40

 $u^{(\mathbf{v})} - d^{(\mathbf{v})}$

Size of the main and \underline{new} systematic errors

•
$$M_{W^+} - M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$$

•
$$M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z} \right)$$

	Systematic	$\delta_{M_{W^+}-M_{W^-}}^{(\text{sys.})} \text{ [MeV]}$	$\delta_{M_W}^{(\text{sys.})}$ [MeV]
ES	$\varepsilon_{l^+} = + \varepsilon_{l^-} = 0.5 \%$	7	200
	$\varepsilon_{l^+}=-\varepsilon_{l^-}=0.5\%$	-550	40
$u^{(\mathbf{v})} - d^{(\mathbf{v})}$	$u_{\text{max}}^{(v)} = 1.05 u^{(v)}$ $d_{\text{min}}^{(v)} = d^{(v)} - 0.05 u^{(v)}$		

Size of the main and \underline{new} systematic errors

•
$$M_{W^+} - M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$$

•
$$M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z} \right)$$

	Systematic	$\delta_{M_{W^+} - M_{W^-}}^{(sys.)}$ [MeV]	$\delta_{M_W}^{(\mathrm{sys.})}$ [MeV]
ES	$\varepsilon_{l^+} = + \varepsilon_{l^-} = 0.5 \%$	7	200
10	$\varepsilon_{l^+}=-\varepsilon_{l^-}=0.5\%$	-550	40
$u^{(\mathbf{v})} - d^{(\mathbf{v})}$	$\begin{split} u_{\max}^{(\mathrm{v})} &= 1.05 u^{(\mathrm{v})} \\ d_{\min}^{(\mathrm{v})} &= d^{(\mathrm{v})} - 0.05 u^{(\mathrm{v})} \end{split}$	130	80

Size of the main and \underline{new} systematic errors

•
$$M_{W^+} - M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$$

•
$$M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z} \right)$$

	Systematic	$\delta_{M_{W^+} - M_{W^-}}^{(sys.)}$ [MeV]	$\delta_{M_W}^{(\mathrm{sys.})}$ [MeV]
ES	$\varepsilon_{l^+}=+\varepsilon_{l^-}=0.5\%$	7	200
15	$\varepsilon_{l^+}=-\varepsilon_{l^-}=0.5\%$	-550	40
$u^{(\mathbf{v})} - d^{(\mathbf{v})}$	$\begin{split} u_{\max}^{(v)} &= 1.05 u^{(v)} \\ d_{\min}^{(v)} &= d^{(v)} - 0.05 u^{(v)} \end{split}$	130	80

$$s-c \qquad c_{\max} = 1.1 c$$
$$s_{\min} = s - 0.1 c$$

Size of the main and \underline{new} systematic errors

•
$$M_{W^+} - M_{W^-} \Rightarrow \chi^2 \left(\operatorname{Asym}^{(+,-)}(p_{T,l}) \right)$$

•
$$M_W \equiv \frac{1}{2}(M_{W^+} + M_{W^-}) \Rightarrow \chi^2 \left(R_{W/Z} \equiv \frac{W^+ + W^-}{Z} \right)$$

	Systematic	$\delta^{({ m sys.})}_{M_{W^+} - M_{W^-}}$ [MeV]	$\delta^{(\mathrm{sys.})}_{M_W}$ [MeV]
ES	$\varepsilon_{l^+}=+\varepsilon_{l^-}=0.5\%$	7	200
10	$\varepsilon_{l^+}=-\varepsilon_{l^-}=0.5\%$	-550	40
$u^{(\mathbf{v})} - d^{(\mathbf{v})}$	$\begin{split} u_{\max}^{(\mathrm{v})} &= 1.05 u^{(\mathrm{v})} \\ d_{\min}^{(\mathrm{v})} &= d^{(\mathrm{v})} - 0.05 u^{(\mathrm{v})} \end{split}$	130	80
s-c	$c_{\max} = 1.1 c$	-15	-100

 $s_{\min} = s - 0.1 c$

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic Strategies/observables

 $\mathrm{ES} \ (\varepsilon_{l^+} = -\varepsilon_{l^-})$

 $u^{(v)} - d^{(v)}$

s-c

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta^{(\text{sys.})}_{M_{W^+} - M_{W^-}}$ [MeV]
------------	------------------------	--

ES $(\varepsilon_{l^+} = -\varepsilon_{l^-})$

 $u^{(\mathbf{v})} - d^{(\mathbf{v})}$

s-c

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta^{(\mathrm{sys.})}_{M_W^+ - M_W^-}$ [MeV]

ES
$$(\varepsilon_{l^+} = -\varepsilon_{l^-})$$
 Asym $_{\vec{B}}^{(+,-)}(p_{T,l}) + \text{Asym}_{-\vec{B}}^{(+,-)}(p_{T,l})$ $-550 \rightarrow 5$

 $u^{(\mathbf{v})} - d^{(\mathbf{v})}$

s-c

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta^{(\mathrm{sys.})}_{M_W+-M_W-}$ [MeV]

$$\operatorname{ES} \left(\varepsilon_{l^+} = -\varepsilon_{l^-} \right) \quad \operatorname{Asym}_{\vec{B}}^{(+,-)} \left(p_{T,l} \right) + \operatorname{Asym}_{-\vec{B}}^{(+,-)} \left(p_{T,l} \right) \qquad -550 \to 5$$

$$u^{(v)} - d^{(v)}$$
 $|\eta_l| < 0.3 \ (L = 100 \, \text{fb}^{-1})$ $130 \to 70$

s-c

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta^{(m sys.)}_{M_{W^+} - M_{W^-}}$ [MeV]

$$\operatorname{ES} \left(\varepsilon_{l^+} = -\varepsilon_{l^-} \right) \quad \operatorname{Asym}_{\vec{B}}^{(+,-)} \left(p_{T,l} \right) + \operatorname{Asym}_{-\vec{B}}^{(+,-)} \left(p_{T,l} \right) \qquad -550 \to 5$$

$$u^{(v)} - d^{(v)} \qquad \begin{aligned} & |\eta_l| < 0.3 \ (L = 100 \ \text{fb}^{-1}) & 130 \to 70 \\ & d \ d \ (\sqrt{S_{nn}} = 7 \ \text{TeV}) & 130 \to 4 \end{aligned}$$

s-c

Further details: arXiv:0812.2571 [hep-ph], arXiv:0906.4260 [hep-ex]
B → -B & dd delicate ⇒ alternative methods

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta_{M_{W^+}-M_{W^-}}^{(\text{sys.})} \text{ [MeV]}$
ES ($\varepsilon_{l^+} = -\varepsilon_{l^-}$)	$\operatorname{Asym}_{\vec{B}}^{(+,-)}(p_{T,l}) + \operatorname{Asym}_{-\vec{B}}^{(+,-)}(p_{T,l})$	$-550 \rightarrow 5$
$u^{(\mathrm{v})} - d^{(\mathrm{v})}$	$ \eta_l < 0.3 \ (L = 100 \ \text{fb}^{-1})$ $d \ d \ (\sqrt{S_{nn}} = 7 \ \text{TeV})$	$130 \rightarrow 70$ $130 \rightarrow 4$

s-c $|y_W| < 0.3 \ (L = 100 \, \text{fb}^{-1})$ $-15 \to -1$

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta_{M_{W^+}-M_{W^-}}^{(\text{sys.})} \text{ [MeV]}$
ES ($\varepsilon_{l^+} = -\varepsilon_{l^-}$)	$\operatorname{Asym}_{\vec{B}}^{(+,-)}(p_{T,l}) + \operatorname{Asym}_{-\vec{B}}^{(+,-)}(p_{T,l})$	$-550 \rightarrow 5$
$u^{(\mathrm{v})} - d^{(\mathrm{v})}$	$ \eta_l < 0.3 \ (L = 100 \ \text{fb}^{-1})$ $d \ d \ (\sqrt{S_{nn}} = 7 \ \text{TeV})$	$130 \rightarrow 70$ $130 \rightarrow 4$

s-c $|y_W| < 0.3 \ (L = 100 \, \text{fb}^{-1})$ $-15 \to -1$

Further details: arXiv:0812.2571 [hep-ph], arXiv:0906.4260 [hep-ex] *B* → -*B* & *d d* delicate ⇒ alternative methods

• Starting $\operatorname{Asym}^{(+,-)}(p_{T,l})$ results

Systematic	Strategies/observables	$\delta_{M_{W^+}-M_{W^-}}^{(\text{sys.})} \text{ [MeV]}$
ES ($\varepsilon_{l^+} = -\varepsilon_{l^-}$)	$\operatorname{Asym}_{\vec{B}}^{(+,-)}\left(p_{T,l}\right) + \operatorname{Asym}_{-\vec{B}}^{(+,-)}\left(p_{T,l}\right)$	$-550 \rightarrow 5$
$u^{(\mathrm{v})} - d^{(\mathrm{v})}$	$ \eta_l < 0.3 \ (L = 100 \ \text{fb}^{-1})$ $d \ d \ (\sqrt{S_{nn}} = 7 \ \text{TeV})$	$130 \rightarrow 70$ $130 \rightarrow 4$

s-c $|y_W| < 0.3 \ (L = 100 \, \text{fb}^{-1})$ $-15 \to -1$

- \bullet Starting from $R_{W/Z},$ making Z "QCD-identical" to W
 - For W, change $\sqrt{S} \& |\vec{B}|$ by a factor $M_W/M_Z \Rightarrow R_{W/Z}^c$

	$\delta_{M_W}^{(\mathrm{sys.})} \; [\mathrm{MeV}]$
ES ($\varepsilon_{l^+} = +\varepsilon_{l^-}$)	

- $R^{c}_{W/Z} \times C_{QCD}$
 - $\blacktriangleright \langle k_T \rangle \Rightarrow \mathrm{OK}$
 - $\blacktriangleright \text{ PDFs} \Rightarrow no \ enhancement$
- Further details: Krasny et al., Eur. Phys. J. C51:607-617 (2007)

Starting from R_{W/Z}, making Z "QCD-identical" to W
 For W, change √S & |B| by a factor M_W/M_Z⇒ R^c_{W/Z}

	$\delta_{M_W}^{(\mathrm{sys.})} \; [\mathrm{MeV}]$
ES ($\varepsilon_{l^+} = +\varepsilon_{l^-}$)	

- $R^{\rm c}_{W/Z} \times C_{\rm QCD}$
 - $\blacktriangleright \langle k_T \rangle \Rightarrow \mathrm{OK}$
 - $\blacktriangleright \text{ PDFs} \Rightarrow \textit{no enhancement}$
- Further details: Krasny et al., Eur. Phys. J. C51:607-617 (2007)

- Starting from $R_{W/Z}$, making Z "QCD-identical" to W
 - For W, change $\sqrt{S} \& |\vec{B}|$ by a factor $M_W/M_Z \Rightarrow R_{W/Z}^c$

Systematic	Strategies/observables	$\delta_{M_W}^{(\text{sys.})} \text{ [MeV]}$
ES ($\varepsilon_{l^+} = + \varepsilon_{l^-}$)	$R^{ m c}_{W/Z}$	$200 \rightarrow 5$

- $R^{\rm c}_{W/Z} \times C_{\rm QCD}$
 - $\blacktriangleright \langle k_T \rangle \Rightarrow \mathrm{OK}$
 - ▶ PDFs \Rightarrow no enhancement
- Further details: Krasny et al., Eur. Phys. J. C51:607-617 (2007)

- Starting from $R_{W/Z}$, making Z "QCD-identical" to W
 - For W, change $\sqrt{S} \& |\vec{B}|$ by a factor $M_W/M_Z \Rightarrow R_{W/Z}^c$

Systematic	Strategies/observables	$\delta_{M_W}^{(m sys.)}$ [MeV]
ES ($\varepsilon_{l^+} = + \varepsilon_{l^-}$)	$R_{W/Z}^{c}$	$200 \rightarrow 5$

- $R^{\rm c}_{W/Z} \times C_{\rm QCD}$
 - $\blacktriangleright \langle k_T \rangle \Rightarrow \mathrm{OK}$
 - ▶ PDFs \Rightarrow no enhancement
- Further details: Krasny et al., Eur. Phys. J. C51:607-617 (2007)

Alternative methods for ES & PDFs sys.

- ES: "Z⁺" $(Z \to l^+ l^-)$ & "Z⁻" $(Z \to l^+ l^-) \Rightarrow \varepsilon_{l^+} \varepsilon_{l^-}$
- PDFs: Dedicated μ DIS experiment (SPS) [LOI, Dydak & Krasny]

Expected precision [%]	$\delta^{(m sys.)}_{M_{W^+} - M_{W^-}} \ [m MeV]$
1	
2	

Expected precision [%]	$\delta^{(m sys.)}_{M_W} \; [m MeV]$
0.2	
1	
1	

 $\begin{array}{c} M_{W^+} - M_{W^-}, \ M_W \ (11/14) \\ -2. \ W \ \text{properties} \ \text{LHC} \\ -2.4 \ M_W \end{array}$

Alternative methods for ES & PDFs sys.

- ES: "Z⁺" $(Z \to l^+ l^-)$ & "Z⁻" $(Z \to l^+ l^-) \Rightarrow \varepsilon_{l^+} \varepsilon_{l^-}$
- PDFs: Dedicated μ DIS experiment (SPS) [LOI, Dydak & Krasny]

Systematic	Expected precision [%]	$\delta_{M_{W^+}-M_{W^-}}^{(\text{sys.})} \text{ [MeV]}$
$``\varepsilon_{l^+}-\varepsilon_{l^-}"$	0.01	10
$``u^{(\mathbf{v})}/d^{(\mathbf{v})}"$	1	25
s - c	2	< 5

Expected precision [%]	$\delta^{(\mathrm{sys.})}_{M_W} \; [\mathrm{MeV}]$
0.2	
1	
1	

 $\begin{array}{c} M_{W^+} - M_{W^-}, \ M_W \ (11/14) \\ -2. \ W \ \text{properties} \ \text{LHC} \\ -2.4 \ M_W \end{array}$

Alternative methods for ES & PDFs sys.

- ES: "Z⁺" $(Z \to l^+ l^-)$ & "Z⁻" $(Z \to l^+ l^-) \Rightarrow \varepsilon_{l^+} \varepsilon_{l^-}$
- PDFs: Dedicated μ DIS experiment (SPS) [LOI, Dydak & Krasny]

Systematic	Expected precision [%]	$\delta^{(\text{sys.})}_{M_{W^+} - M_{W^-}} \text{ [MeV]}$
$``\varepsilon_{l^+}-\varepsilon_{l^-}"$	0.01	10
$``u^{(\mathbf{v})}/d^{(\mathbf{v})}"$	1	25
s - c	2	< 5

Systematic	Expected precision [%]	$\delta^{(m sys.)}_{M_W} [m MeV]$
$``\varepsilon_{l^+}-\varepsilon_{l^-}"$	0.2	8
$``u^{(\mathbf{v})}/d^{(\mathbf{v})}"$	1	12
"s - c"	1	10

4. Conclusion

- Tevatron: $W^+ \stackrel{CP}{\iff} W^- \Rightarrow$ Precision measurement for M_W
- LHC: $W^+ \stackrel{CP}{\iff} W^-$
 - ► Loss of symmetry \Rightarrow *New important* sources of $\delta^{(sys.)}$ (*e.g.* PDFs)
- Solutions :
 - $ES (\varepsilon_{l^+} \varepsilon_{l^-}):$ $(1) \quad "Z^+" \& "Z^+", \text{ or...}$ $(2) \quad \vec{B} \to -\vec{B}$

Improve valence sector knowledge:

- (1) Muon DIS (SPS), or...
- (2) dd LHC-runs

FINAL WARNING: These problems will have to be considered in other LHC processes (e.g. single top)

- Tevatron: $W^+ \stackrel{CP}{\iff} W^- \Rightarrow$ Precision measurement for M_W
- LHC: $W^+ \stackrel{CP}{\iff} W^-$
 - ► Loss of symmetry \Rightarrow *New important* sources of $\delta^{(sys.)}$ (*e.g.* PDFs)
- Solutions :
 - $ES (\varepsilon_{l^+} \varepsilon_{l^-}):$ (1) "Z⁺" & "Z⁺", or...
 (2) $\vec{B} \rightarrow -\vec{B}$

Improve valence sector knowledge:

- (1) Muon DIS (SPS), or...
- (2) dd LHC-runs

FINAL WARNING: These problems will have to be considered in other LHC processes (e.g. single top)

• WINHAC : Płaczek & Jadach, Eur. Phys. J. C**29**:325-339 (2003)

- $M_{W^+} M_{W^-}$:
 - ▶ arXiv:0812.2571 [hep-ph] (submitted to EPJ C)
 - ▶ arXiv:0906.4260 [hep-ex] (Ph.D., F.F.)
 - http://lpnhe-atlas.in2p3.fr/Atlas/Contacts/fayette/talks/
- M_W :
 - Making Z "QCD identical" to W, Krasny et al., Eur. Phys. J. C51:607-617 (2007)
 - M_W paper: to be submitted to EPJ C

• Muon DIS at the SPS: Letter of Intent, F. Dydak & M.W. Krasny (in preparation)