Full jet reconstruction in 200 GeV p+p, d+Au and Au+Au collisions by STAR

Jan Kapitán

Nuclear Physics Institute ASCR, Czech Republic (for the STAR Collaboration)

Jan Kapitán (STAR)

Outline

- motivation
- STAR experiment at RHIC
- jet reconstruction technique
- probe the initial state: p+p and d+Au collisions
- probe the final state/medium: Au+Au (p+p as reference)

Motivation

- di-hadron correlations:
 - surface & fragmentation biases
 - indirect method to study jet quenching
- study the quenching directly with jets:
 - access the partonic kinematics
 - well calibrated probe (pQCD)
 - ?unbiased jet reconstruction (N_{bin} scaling)
 - ?modified fragmentation due to quenching

STAR p+p jet spectrum: agreement with theory over 7 orders of magnitude

EPS HEP 2009, Krakow

Jan Kapitán (STAR)

3

STAR experiment at RHIC

RHIC (BNL):

d+Au, Cu+Cu, Au+Au, (U+U): $\sqrt{s_{_{NN}}} \le 200 \text{ GeV}$ p+p: $\sqrt{s} \le 500 \text{ GeV}$

magnetic field 0.5 T

<u>detectors used (|η|<1, Φ: 2π):</u>
Time Projection Chamber: tracking
Barrel EM Calorimeter (BEMC): -neutral energy (towers 0.05x0.05) -trigger

100% electron/hadronic correction for matched tracks: avoid doublecounting

data used in this analysis: p+p 2006, Au+Au 2007, p+p & d+Au 2008

Jan Kapitán (STAR)

4

Jet reconstruction

recombination algorithms from FastJet* package <u>*: Cacciari, Salam and Soyez, JHEP0804 (20</u>08) 005, arXiv:0802.1188.

- kt: clustering starts with low p_{τ} particles
- anti-kt: clustering starts with high p_{T} particles
- resolution parameter R (~radius)
- background and its fluctuations:
 - crucial for Au+Au collisions
 - reduce background by: smaller R, low p_{T} cut
 - background subtraction:
 - $p_{T,jet,observed} = p_{T,jet,true} + \rho * A$
 - background fluctuation: resolution: $\sigma * \sqrt{A}$
 - A jet active area (obtained using ghost particles)
 - ρ , σ event-by-event from p_T/A distribution (kt algorithm):
 - ρ: median
 - σ : one-sided sigma (avoid bias from hard jets)

anti-kt expected to be less susceptible to bg effects in heavy-ion col.

Jets in d+Au collisions

- run 8 RHIC d+Au data: 20% most central collisions
- compare to run 8 p+p data
- } similar systematics • trigger: BEMC tower $E_T > 4.3$ GeV (p+p, d+Au)
- using $p_{\tau} > 0.5$ GeV/c, R = 0.5, fiducial jet acceptance $|\eta| < 0.9$ -R

Jan Kapitán (STAR)

Jets in d+Au collisions

- run 8 RHIC d+Au data: 20% most central collisions
- compare to run 8 p+p data
- } similar systematics • trigger: BEMC tower $E_T > 4.3$ GeV (p+p, d+Au)
- using $p_{\tau} > 0.5$ GeV/c, R = 0.5, fiducial jet acceptance $|\eta| < 0.9$ -R

Pythia simulation

- Pythia 6.410, GEANT, STAR reconstruction software
- PyMC (particle level), PyGe (detector level), PyBg (detector level + bg)

jet p_{T} resolution:

roughly 20% shift: unobserved neutral energy, tracking efficiency, dead towers

very good angular resolution

Jan Kapitán (STAR)

Towards k_{τ} measurement: di-jets in d+Au

select two highest energy jets in event:

• $p_{T,1} > p_{T,2}$

• use cut on $p_{T,2}$ to suppress background/fake jets

Towards k_{τ} measurement: di-jets in d+Au

select two highest energy jets in event:

- p_{T,1} > p_{T,2}
- use cut on $p_{T,2}$ to suppress background/fake jets

clear back-to-back di-jet peak in $\Delta \Phi$:

EPS HEP 2009, Krakow

Jan Kapitán (STAR)

Measurement of k_{τ} effect

- di-jet $\Delta \Phi$ broadening: intrinsic k_T + ISR,FSR (incl. CNM effects)
- measure in d+Au collisions and compare to p+p
- $\mathbf{k}_{T,raw} = \mathbf{p}_{T,1} * \sin(\Delta \Phi)$, $|\sin(\Delta \Phi)| < 0.5$, Gaussian fit

detector effects on k_{τ} measurement:

...resulting detector effects are small, due to interplay of jet p_T and di-jet $\Delta \Phi$ resolutions

Jan Kapitán (STAR)

11

Do we see CNM effects in k_{\tau}?

the same analysis technique in p+p and d+Au collisions
average over 2 p_{T,2} bins and 2 algorithms: kt, anti-kt

 $\sigma_{kT,raw}(p+p) = 2.8 \pm 0.1 \text{ GeV/c}$ $\sigma_{kT,raw}(d+Au) = 3.0 \pm 0.1 \text{ GeV/c}$?decrease at high p_T (quark jets?): higher jet energies to be studied

conclusion: no strong Cold Nuclear Matter effect on jet k₊ broadening seen

Jan Kapitán (STAR)

12

Jet reconstruction in Au+Au

jet spectra: unbiased jet reconstruction (N_{bin} scaling: R_{AA} = 1)?
fragmentation functions: modification due to quenching?

challenge: large background

- central collisions: bg fluctuations due to elliptic flow negligible
- using R=0.4 to reduce background (~45 GeV per jet)
- bg fluctuations: jet p_T smearing

 $\sigma * \sqrt{A} \thicksim 6 \text{ GeV}$

unfold background fluctuations to be able to compare to jets in p+p:

 $\begin{array}{l} \mbox{...main} \\ \mbox{systematic} \\ \mbox{uncertainty:} \\ \mbox{taking } \sigma \pm 1 \\ \mbox{GeV} \end{array}$

Jan Kapitán (STAR)

13

Medium modification of jet p₇ spectra

- uncorrelated point-to-point systematic error
- work in progress to improve systematic uncertainties
- R=0.4 unsufficient for unbiased jet reconstruction?

Jan Kapitán (STAR)

14

Medium modification of jet p_{τ} spectra

- uncorrelated point-to-point systematic error
- work in progress to improve systematic uncertainties
- R=0.4 unsufficient for unbiased jet reconstruction?

Jan Kapitán (STAR)

15

Recoil jet analysis

• use High Tower trigger: $E_{\tau} > 5.4 \text{ GeV}$ maximizing medium path-length of the recoil jet

significant suppression of recoil jets seen: ?absorption/energy shift

Jan Kapitán (STAR)

 $d\sigma$

Fragmentation functions

- use recoil jet and its unfolded energy to measure FF
- FF: $z = p_T$ (charged hadron) / p_T (jet)
- R=0.4 for jet energy
- R=0.7 for particles to construct FF
- subtract bg particles p_{T} distribution (out of jet area)

no significant modification of FF for recoil jets $p_{T,rec}$ (recoil) > 25 GeV/c

?dominated by non-interacting jets, such as tangential emission / punch-through jets

Jan Kapitán (STAR)

Conclusions

Cold Nuclear Matter effects:
 no strong evidence of k_τ broadening in d+Au collisions

Medium modification via full jet reconstruction in central Au+Au collisions:
 R_{AA} hints sensitivity to different jet algorithms
 unbiased jet reconstruction not achieved for R=0.4?
 work in progress to improve systematic uncertainties

→ R=0.2/R=0.4 p_T spectra ratio decreasing with p_T (in contrast to p+p) → quenching leads to jet broadening?

no strong FF modification for high energy (>25 GeV/c) recoil jets
 surviving recoil jets are those non-interacting?

Jet finding

EPS HEP 2009, Krakow

Jan Kapitán (STAR)

Jet spectra - unfolding

Jan Kapitán (STAR)

H – recoil jet coincidences

EPS HEP 2009, Krakow

Jan Kapitán (STAR)

Fragmentation functions

Jan Kapitán (STAR)

23