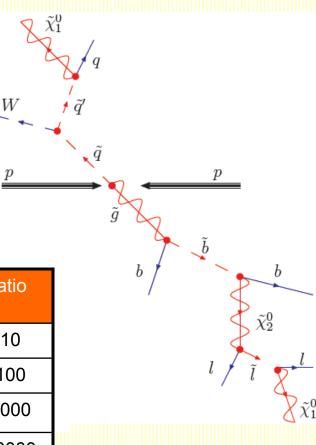

Prospects for R-parity Conserving SUSY searches at the LHC

Marie-Hélène Genest

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Ludwig-Maximilians-Universität München EPS 2009


On behalf of the CMS and ATLAS collaborations

SUSY at the LHC

- Potentially long decay chains:
 - high-p_T jets
 - leptons (from charginos / neutralinos)
 - missing transverse energy (Lightest SParticle)
- Main backgrounds:
 - ttbar
 - QCD
 - W/Z+jets

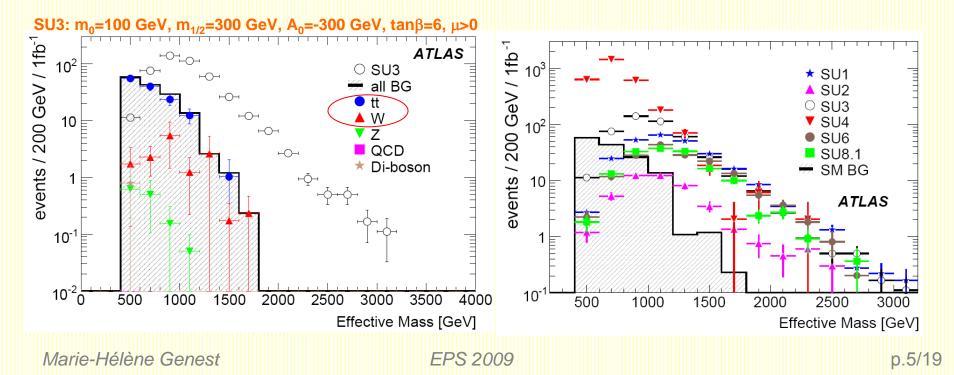
\rightarrow Look for different types of signatures

	Tevatron: σ (pb)	LHC (√s=14 TeV): σ (pb)	Ratio
W [±] (80 GeV)	2600	20000	~10
ttbar (2x172 GeV)	7	800	~100
q̃q̃ (2x400 GeV)	0.05	60	~1000
ĝĝ (2x400 GeV)	0.005	100	~20000

The different search channels

- 0-lepton channel (jets + E_T^{miss})
 - the least model-dependent SUSY signature search
 - Strong cuts to reduce the QCD background
 - Simple cuts for higher sensitivity
 - Main backgrounds: QCD, ttbar, W, Z
- 1-lepton channel (1 lepton + jets + E_T^{miss})
 - Requiring one lepton is a slightly less generic search but increases the robustness
 - \rightarrow Golden channel at the beginning of data-taking
 - Main backgrounds: ttbar, W

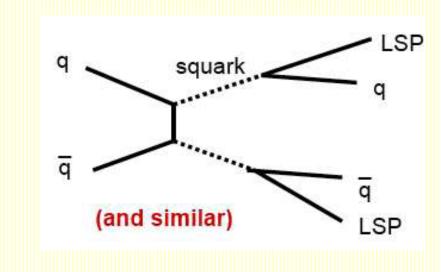
The different search channels

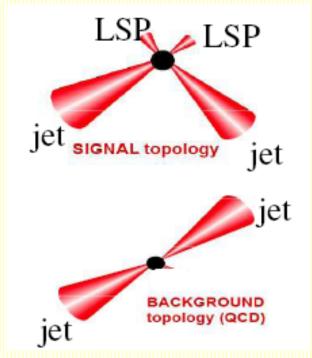

- Multi-lepton channel (2/3 leptons)
 - Neutralinos/charginos in the decay chain \rightarrow 2 or 3 leptons in the final state
 - 2 leptons:
 - Opposite sign: non-resonant excess but SM background
 - Same sign: low SM background but lower statistics
 - 3 leptons:
 - 1 jet (avoid cutting on E_T^{miss})
 - E_T^{miss} + Opposite Sign Same Flavour (probe the gaugino direct production)
- τ channel
 - Large $tan\beta$ favours light 3rd generation superpartners
 - Leptonically decaying τ s indistinguishable from leptons (included in other channels)
 - Main backgrounds: ttbar, W, Z
- b channel
 - The presence of b-jets in SUSY cascades is also enhanced by tanβ
 - Asking for 2/3 b-jets in the final state (standard b-tagging in ATLAS: ε~50-60%)
 - Main background: ttbar (W,Z reduced)

An example: the 1-lepton channel in ATLAS

- One isolated lepton with $p_T > 20$ GeV and no other lepton with $p_T > 10$ GeV
- At least 4 jets with $p_T > 50$ GeV and $p_T^{J1} > 100$ GeV
- E_T^{miss} > max (100 GeV, 0.2M_{eff})
- Transverse sphericity $S_T > 0.2$
- Transverse mass $M_T > 100 \text{ GeV}$

$$M_{eff} = \sum_{i} p_T^{jet,i} + \sum_{j} p_T^{lepton,j} + E_T^{miss}$$


$$M_T = \sqrt{2 p_T^{lepton} E_T^{miss} (1 - \cos \varphi(\vec{p}_T^{miss}, \vec{p}_T^{lepton}))}$$


An example: the 0-lepton di-jet channel in CMS

Inspired by L.Randall & D.Tucker-Smith doi:10.1103/PhysRevLett.101.221803

 Probing the squark → quark + neutralino channel (m_{squark} < m_{qluino})

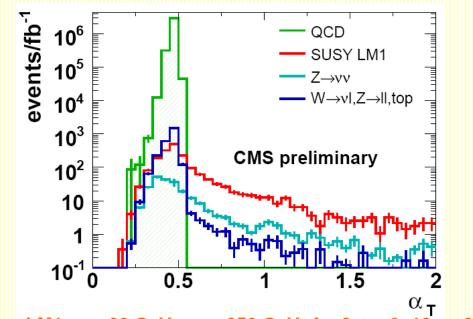
• Topology: 2 jets + E_T^{miss}

An example: the 0-lepton di-jet channel in CMS

• Introduce α_T (= 0.5 for perfectly measured QCD events):

$$\alpha_{\rm T} = \frac{E_{\rm T}^{\rm j2}}{\sqrt{2E_{\rm T}^{\rm j1}E_{\rm T}^{\rm j2}(1-\cos\Delta\phi)}} = \frac{\sqrt{E_{\rm T}^{\rm j2}/E_{\rm T}^{\rm j1}}}{\sqrt{2(1-\cos\Delta\phi)}}$$

E_T^{miss} is not the dominant search variable!


- |η^{J1}| < 2.5
- E_T^{J1,J2} > 50 GeV
- No *e* or μ with $p_T > 10$ GeV
- No 3^{rd} jet with $p_T > 50 \text{ GeV}$
- $\Delta \phi(-|\Sigma \vec{p}_{T}|, J_{i}) > 0.3$ for i=1,2,3
- $p_T^{J1} + p_T^{J2} > 500 \text{ GeV}$

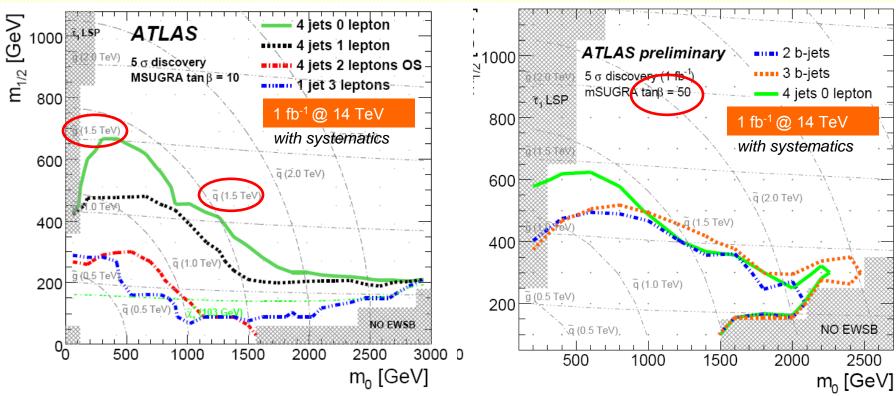
Marie-Hélène Genest

EPS 2009

An example: the 0-lepton di-jet channel in CMS

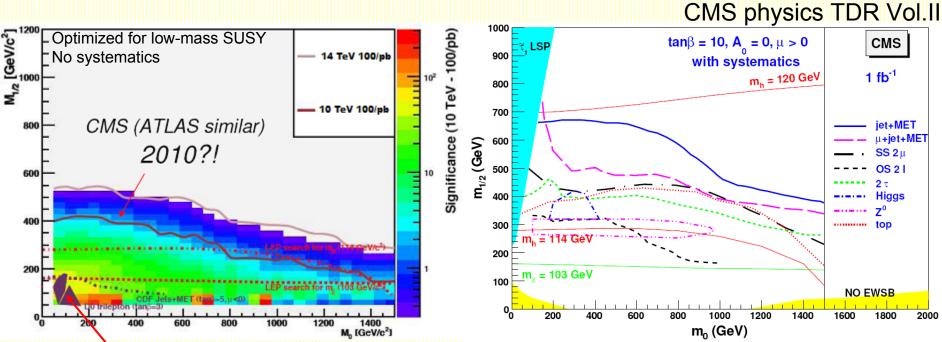
• All cuts but α_T applied:

LM1: $m_0=60$ GeV, $m_{1/2}=250$ GeV, $A_0=0$, $tan\beta=10$, $\mu>0$


• Number of events for 1 fb⁻¹ @ 14 TeV after $\alpha_T > 0.55$:

LM1	QCD	Z+jets	tt, W+jets			
439	0	58	19			

Marie-Hélène Genest

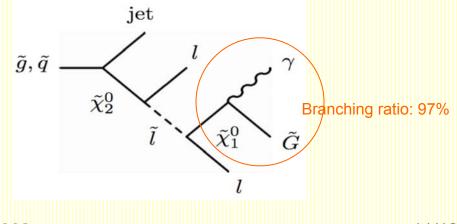

EPS 2009

Discovery reach in ATLAS

- The 0-lepton channel has the highest reach
- The 1-lepton channel is more robust against QCD
- The b-jet channel is competitive with the 0-lepton one at high tanβ (better reach at high m₀: 3-body decays of the gluinos involving t and b)

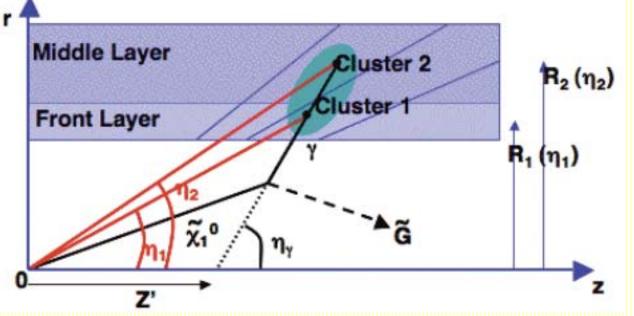
Discovery reach in CMS

Tevatron


- The most powerful channel in CMS is also the jets + E_τ^{miss} channel
- With only 50 pb⁻¹ of understood data @ 10 TeV, the LHC can go significantly beyond the reach of the Tevatron

Gauge Mediated SUSY Breaking in ATLAS

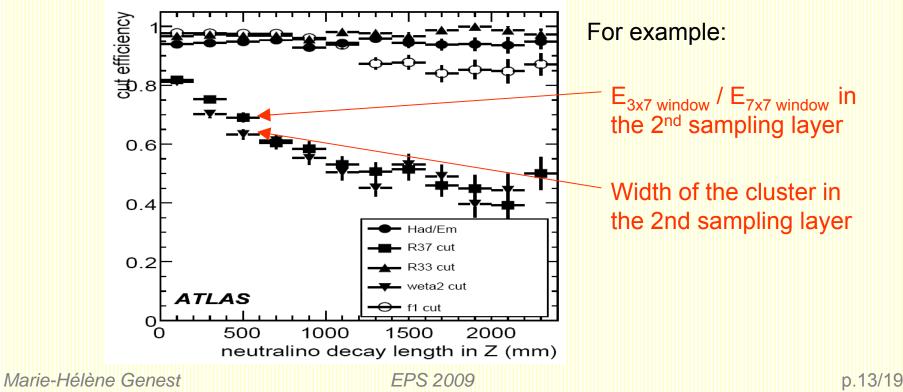
- SUSY broken by gauge interactions through messenger gauge fields
 Δ SUSY breaking scale
- 6 free parameters:


ΛSUSY breaking scaleMMessenger mass scaletanβRatio of Higgs VEVsNNumber of messenger multipletsSign(μ)Sign of Higgs mass parameterC_{grav}Scale factor of Gravitino coupling

- If tan β is low and N=1 : $\tilde{\chi}_1^0$ is the NLSP
- Signature: Jets, 2 leptons, E_T^{miss}, 2 γ

Non-pointing photons in ATLAS

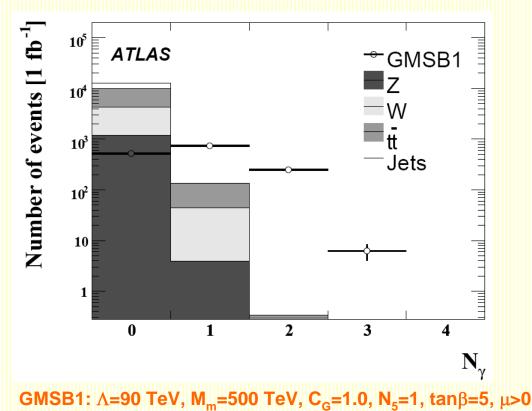
• If the decay length of the $\tilde{\chi}_1^0$ is comparable to the size of ATLAS inner detector, there could be high-p_T non-pointing photons:



 $\eta_2 (\ll \eta_{detector} \gg) != \eta_{\gamma} (\ll \eta_{true} \gg)$

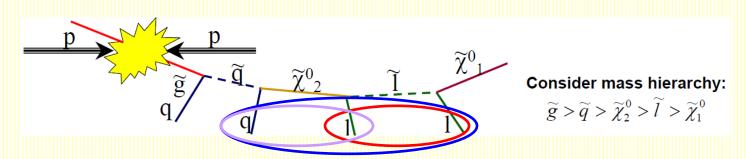
Non-pointing photons can have a wider shower profile than pointing photons

Identifying non-pointing photons in ATLAS


- Idea:
 - only use the photon identification selections which are unbiased w.r.t. the neutralino decay length (losen the ID cuts)
 - this increases the fake rate from jets:
 - from 0.19 ± 0.03% to 0.70 ± 0.07%

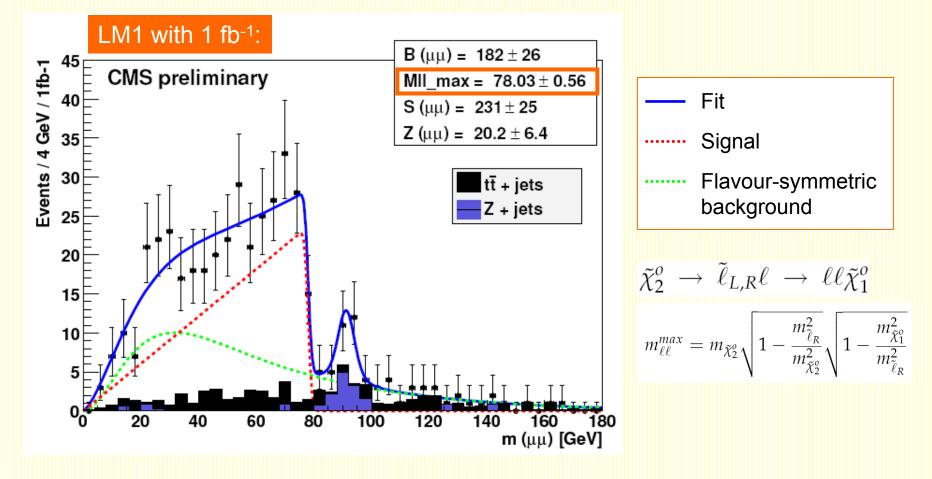
Gauge Mediated SUSY Breaking in ATLAS

Selection:


- $N_{\text{Jets}} \ge 4$ with $p_T > 50$ GeV
- p_T^{j1} > 100 GeV
- E_T^{miss} > max(100 GeV, 0.2M_{eff})
- ttbar is the main background

 Techniques are being developed to extract the lifetime of the neutralino using timing and directional information from LAr calorimeter
 → talk by Andrea Giammanco in tomorrow's Higgs and New Physics session

Exclusive measurements


- When SUSY is discovered (if SUSY exists!), the experimental emphasis will be put on measuring the sparticle mass spectrum and deriving the parameters of the model
- The strategy is to exploit kinematics of long decay chains
- The first chain likely to be reconstructed:

- Due to the LSPs, the decay chain cannot be completely reconstructed
- Edges, rather than mass peaks, are measured in the invariant mass distribution of the decay products (e.g. m_{II}, m_{IIq}, m_{Iq}, etc)

Exclusive measurements in CMS

Measure the different endpoints, for example $m(\mu\mu)^{max}$:

Exclusive measurements in ATLAS

Even with 1 fb⁻¹ some measurements are possible:

Example point with 1 fb⁻¹:

Observable	SU3 $m_{\rm meas}$	SU3 $m_{\rm MC}$							
	[GeV]	[GeV]							
$m_{ ilde{\chi}_1^0}$	$88\pm60\mp2$	118							
$m_{\tilde{\chi}^0_2}$	$189\pm60\mp2$	219							
$m_{\tilde{q}}$	$614\pm91\pm11$	634							
$m_{\tilde{\ell}}$	$122\pm 61\mp 2$	155							
Observable	SU3 $\Delta m_{\rm meas}$	SU3 $\Delta m_{\rm MC}$							
	[GeV]	[GeV]							
$m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}$	$100.6 \pm 1.9 \mp 0.0$	100.7							
$m_{\tilde{q}} - m_{\tilde{\chi}_1^0}$	$526\pm34\pm13$	516.0							
$m_{\tilde{\ell}} - m_{\tilde{\chi}_1^0}^{\kappa_1}$	$34.2 \pm 3.8 \mp 0.1$	37.6							
λ_1 Error: MIGRAD + jet energy scale									

However:

The statistical errors are big

• The mass differences are better measured than the absolute masses

Similar findings in CMS

Exclusive measurements in ATLAS

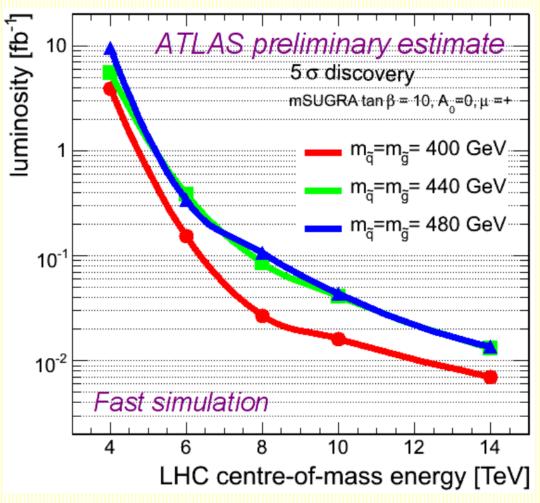
<u>Ultimate goal:</u> Determine SUSY parameters from endpoint measurements

- *Fittino* package to determine the mSUGRA parameters
- First results:
 - Sign(μ) > 0 is favoured but sign(μ) < 0 is not ruled out (χ^2 =12.6 vs χ^2 =15.4)
 - M₀ and M_{1/2} are well constrained
 - A₀ and tanβ are more problematic: there is no information from the Higgs sector at low integrated luminosity

Similar findings in CMS

Example point with 1 fb⁻¹:

	Parameter	SU3 value	fitted value	exp. unc.									
	sign $(\mu) = +1$												
	$tan \beta$	6	7.4	4.6									
	M_0	100 GeV	98.5 GeV	$\pm 9.3 \text{ GeV}$									
	$M_{1/2}$	300 GeV	317.7 GeV	$\pm 6.9~{\rm GeV}$									
	A_0	-300 GeV	445 GeV	$\pm 408~{ m GeV}$									
		sign(µ	(1) = -1										
-	$\tan \beta$		13.9	± 2.8									
•	M_0		104 GeV	$\pm 18 \text{ GeV}$									
	$M_{1/2}$		309.6 GeV	$\pm 5.9 \text{ GeV}$									
	A_0		489 GeV	$\pm 189~{\rm GeV}$									


Conclusion

- Looking for excesses in inclusive search channels is the first step towards finding SUSY at the LHC
- Strategies are being developed for different scenarios, e.g. the non-pointing photons in GMSB
- The LHC should be able to discover squarks and gluinos with masses up to 1-1.5 TeV (if systematics are as expected for 1fb⁻¹)
- Backgrounds and detectors need to be understood
- After a discovery, the next step would be to select specific SUSY decay chains to measure the properties of new particles
- Some masses can already be measured with 1fb⁻¹ for low-mass SUSY scenarios

Backup slides

Different centre-of-mass energies

- Discovery sensitivity possible for SUSY, in an mSUGRA model with equal mass squarks and gluinos.
- The lepton plus jets plus missing-ET channel is employed, as this should be understood more rapidly than the statistically more powerful inclusive jets+missing-Et channel.
- The current published Tevatron limits in this model are around 400 GeV

The SUSY points in this talk

Particle

 \tilde{d}_I

SU1

SU2

SU4

764.90 3564.13 636.27 419.84 870.79 801.16 956.07

SU6

SU8.1

SU9

SU3

mSUGRA:

mS	UC	ͻK/	4:					\tilde{u}_L \tilde{b}_1	760.42 697.90	3563.24 2924.80	631.51 575.23	412.2 358.4		797.0 690.3		
Poin	,t	m₀ [GeV]	m _{1/2} [GeV]	A₀ [GeV]	tanβ	sign(µ)	1	$ ilde{t}_1 \\ ilde{d}_R$	572.96	2131.11	424.12			603.6		
		nı0[Gev]	m _{1/2} [Gev]	A0 [Gev]	tanp	sign(µ)			733.53 735.41	3576.13 3574.18	610.69 611.81	406.2 404.9		771.9 773.6		
Coannihilati	on (SU1)	70	350	0	10	+		\tilde{u}_R \tilde{b}_2	733.41	3500.55	610.73	399.1				
Focus Poin	nt (SU2)	3550	300	0	10	+	11	\tilde{t}_2	749.46	2935.36	650.50					
Bulk (S	U3)	100	300	-300	6	+		\tilde{e}_L	255.13	3547.50	230.45	231.9	411.89	325.4	4 417.21	
,	/				10		11	\tilde{v}_e	238.31	3546.32	216.96					
Low Mass	s (SU4)	200	160	-400	10	+	- 11	$\tilde{\tau}_1$	146.50	3519.62	149.99			151.9		
Funnel (SU6)	320	375	0	50	+		\tilde{v}_{τ}	237.56	3532.27	216.29					
Coannihilatio	on (SU8.1)	210	360	0	40	+		\tilde{e}_R	154.06	3547.46	155.45					
		**1111111111111						$\tilde{\tau}_2$	256.98	3533.69	232.17	236.0				
Label o	o ^{LO} (pb)							ĝ z0	832.33	856.59	717.46 117.91					
and the second sec								$\tilde{\chi}_1$	136.98 263.64	103.35 160.37	218.60	59.8 113.4		142.4 273.9		
SU1	8.15							$\tilde{\mathbf{x}}_{2}^{0}$	466.44	179.76	463.99			463.5		
SU2	5.17							$\tilde{\mathbf{x}}_{0}^{0}$	483.30	294.90	480.59			479.0		
SU3	U3 20.85							$egin{array}{c} ilde{m{\chi}}_1^0 \ ilde{m{\chi}}_2^0 \ ilde{m{\chi}}_3^0 \ ilde{m{\chi}}_3^0 \ ilde{m{\chi}}_4^0 \ ilde{m{\chi}}_1^0 \ ilde{m{\chi}}_1^0 \end{array}$	262.06	149.42	218.33			274.3		
								$\tilde{\chi}_{2}^{+}$	483.62	286.81	480.16					
SU4	SU4 294.46							$rac{ ilde{\chi}_2^+}{h^0}$	115.81	119.01	114.83	113.9	08 116.85	116.6	9 114.45	
SU6	SU6 4.47							H^0	515.99	3529.74	512.86	370.4	7 388.92	430.4	9 632.77	
SU8.1	6.48					A ⁰	512.39	3506.62	511.53	368.1	8 386.47	427.7	4 628.60			
								H^+	521.90	3530.61	518.15			440.2		
SU9	2.46							t	175.00	175.00	175.00	175.0	0 175.00	175.0	0 175.00	
			<u></u>				11			11 1			0			
Sample	m_0	$m_{1/}$	A_0	$\tan \beta$	$sign(\mu)$	σN	110	0 ((LO)	lighte	est q	χ	1			
	(GeV) (Ge	V)			(F	b)		(pb)	(Ge	V)	(Ge	eV)			
LM1	60	250	0 (10	+	54	.86	5 (4	3.28)	410 ((\tilde{t}_1)	9	7			
								Ì	,		(-1)					
	CE	2. 🗆	name	NLO	(LO) σ	[pb]	Λ	[TeV	7] M	m [TeV] (C_{G}	<i>cτ</i> [m	m]	$M_{\tilde{\mathbf{y}}_{1}^{0}}$ [C	GeV]
GMSE		DD. GMSB1		7	7.8 (5.1)			90		500		1.0	1.1		118.8	
$N_5 = 1, \tan\beta = 5, \operatorname{sgn}(\mu) = +$								20		500	uu luu i	1.0	1.1		110.	.0
		Λ	$\sqrt{5} = 1$, tai	$n\beta = 5$	$s, sgn(\mu)$) = +	-									