

A systematic study of the strong interaction with PANDA

J.G. Messchendorp (KVI) for the PANDA collaboration

PANDA

antiProton ANnihilation at Darmstadt

PANDA Physics Program

Study of the strong force using anti-protons

PANDA Physics Program

Study of the strong force using anti-protons

Charmonium spectroscopy

- precision spectroscopy
- rigorous study of confinement potential
- extending measurements at e⁺e⁻ colliders

Search for glueballs and hybrids

- test of QCD: mass & confinement
- inheritance of LEAR and FNAL
- high discovery potential

Charm in-medium

- origin of mass
- (partial) restoration of χ -symmetry
- new frontier

Baryon spectroscopy, Hypernuclei, EM studies, rare decays, ...

e⁺e⁻ versus pp annihilations

e⁺e⁻ reactions: pp reactions: only 1⁻⁻ states formed directly all states directly formed

e⁺e⁻ versus pp annihilations

e⁺e⁻ reactions: pp reactions: only 1⁻⁻ states formed directly all states directly formed

FAIR: the GSI future facility

widths ~10%

PANDA is a modular multi-purpose device:

- nearly 4π solid angle
- high rate capability
- good PID
- momentum resolution
- vertex info for D, K_{S}^{0} , Λ (c_r = 317 µm for D[±])
- e.m. calorimeter
- efficient trigger
- modular design

(sensitive to low energies) (e,μ,K,D,Λ ,real-time feature extr.) (Hypernuclei experiments)

(partial wave analysis)

(2.10⁷ annihilations/s)

(γ, e, μ, π, K, p)

(~1%)

Hadron Spectroscopy

Hadron Spectroscopy

Charmonium - positronium of QCD

- confinement potential
- narrow states (e.m. decay)
- lots known...
- many open problems left!

Charmonium - positronium of QCD

- confinement potential
- narrow states (e.m. decay)
- lots known...
- many open problems left!

Charmonium - h_c(1¹P₁)

Width unknown!

Charmonium - $h_c(1^1P_1)$

Charmonium - new frontiers

- data and interpretation above DD threshold not clear
- recent discovered narrow states
- alphabet "XYZ" states

Charmonium - new frontiers

- data and interpretation above DD threshold not clear
- recent discovered narrow states
- alphabet "XYZ" states

Charmonium - new frontiers

- data and interpretation above DD threshold not clear
- recent discovered narrow states
- alphabet "XYZ" states

PANDA physics performance studies (arxiv:0903.3905)

Open Charm Spectroscopy - D_{sJ}

D_{sJ} spectroscopy: The analog of hydrogen atom

Open Charm Spectroscopy - D_s

D_{sJ} spectroscopy: The analog of hydrogen atom

Striking discrepancies of recently discovered states (B factories, CLEO&BaBar) Chiral partners? DK threshold effects? 4-q state?

Open Charm Spectroscopy - D_s

D_{sJ} **spectroscopy**: The analog of hydrogen atom

Striking discrepancies of recently discovered states (B factofies! $CL^2 O \otimes BaBaV$) Chiral partners? DK threshold effects? 4-q state? $\Gamma = 1 MeV$

$$m = 2317.30 \ MeV/c^2$$

PANDA: near-threshold scan -> Μ,Γ

Hadron Spectroscopy

Hadron Spectroscopy

Glueballs & Hybrids

Lattice calculations

G.S. Bali, Eur. Phys. J. A19 1 (2004)

Glueballs:

rich glueball spectrum odd-balls ~4-5 GeV

the *ultimate* evidence for confinement... we *better* find them!

Hybrids:

exotic charm-hybrid $J^{PC} = 1^{-+}$: 4.2-4.5 GeV Flux-tube prediction: $\Gamma < 50$ MeV, σ ~100-150 pb

Glueballs & Hybrids

G.S. Bali, Eur. Phys. J. A19 1 (2004)

Glueballs:

rich glueball spectrum odd-balls ~4-5 GeV

the *ultimate* evidence for confinement... we *better* find them!

Hybrids:

exotic charm-hybrid $J^{PC} = 1^{+}$: 4.2-4.5 GeV Flux-tube prediction: $\Gamma < 50$ MeV, σ ~100-150 pb

Glueballs & Hybrids

G.S. Bali, Eur. Phys. J. A19 1 (2004)

Glueballs:

rich glueball spectrum odd-balls ~4-5 GeV

the *ultimate* evidence for confinement... we *better* find them!

Hybrids:

exotic charm-hybrid $J^{PC} = 1^{-+}$: 4.2-4.5 GeV Flux-tube prediction: $\Gamma < 50$ MeV, σ ~100-150 pb

Anti-protons as tool to study...

QCD with Nuclei

Hyperon interactions in $\Lambda \Lambda$ hypernuclei

Mass modification of mesons - direct and indirect inmedium mass measurements of charmed mesons

Structure of the Proton

GPDs via reversed Deeply Virtual Compton Scattering & Drell-Yan

"Spin" Structure using polarized anti-protons (PAX)

EM Form Factors of the Proton - time-like region up to Q²=25 GeV²

Beyond the Standard Model

CP-violation in D/ Λ - sector - D⁰D⁰ mixing and in $\Lambda\overline{\Lambda}$ decay asymmetries

Rare decays : $D^+ - > \mu^+ \nu$, $D - > \mu^+ \mu^-$

Physics analysis

Simulations

Collaboration with theory

Development of event generators

Partial Wave Analysis

achievements:

•Physics benchmark report (arxiv:0903.3905)

Simulation&analysis framework

Physics benchmark & detector design

Large-scale comp. (GRID)

achievements:

- Computing model
- Detailed simulation framework

Detector & target developments

Prototype testing

FEE, Trigger & DAQ

achievements:

•TDRs: EMC, Magnets,... •Funding: EMC, Dipole magnet, Cerenkov

NCC-10

>400 physicists from 53 institutions of 16 countries

NCC-110

>400 physicists from 53 institutions of 16 countries

Austria – Belaruz - China - France - Germany –India - Italy – Netherlands Poland – Romania - Russia – Spain - Sweden – Switzerland - U.K. – U.S.A..

NCC-110

>400 physicists from 53 institutions of 16 countries

Austria – Belaruz - China - France - Germany –India - Italy – Netherlands Poland – Romania - Russia – Spain - Sweden – Switzerland - U.K. – U.S.A..

Basel, Beijing, Bochum, IIT Bombay, Bonn, Brescia, IFIN Bucharest, Catania, Chicago, Cracow, IFJ PAN Cracow, Cracow UT, Dresden, Edinburg, Erlangen, Ferrara, Frankfurt, Genova, Giessen, Glasgow, GSI, FZ Jülich, JINR Dubna, Katowice, KVI Groningen, Lanzhou, LNF, Lund, Mainz, Minsk, ITEP Moscow, MPEI Moscow, TU München, Münster, Northwestern, BINP Novosibirsk, IPN Orsay, Pavia, Piemonte Orientale, IHEP Protvino, PNPI St. Petersburg, KTH Stockholm, Stockholm, U Torino, INFN Torino, Torino Politecnico, Trieste, TSL Uppsala, Tübingen, Uppsala, Valencia, SINS Warsaw, TU Warsaw, SMI Wien

News for the critics

News for the critics

BBC IFWS

BBC News in video and audio

► F

F F

. .

ws Front Page

E-mail this to a friend Printable version

New optimism for panda survival

Africa Americas Asia-Pacific Europe Middle East South Asia UK England Northern Ireland Scotland Wales UK Politics

Education

The giant panda has a better chance of survival than previously thought, scientists have discovered.

The fear had been that their bamboo diet, slow reproduction rate and isolated habitat made them unable to adapt as a species in the modern world.

But research by Cardiff

The Wolong Giant Panda Research Centre helped with the fieldwork

University and scientists in Beijing shows they are more capable of evolving than believed.