

EPS HEP 2009

Kraków

Alignment of the ATLAS Inner Detector Tracking System

Oleg Brandt^{1,2} on behalf of the ATLAS Collaboration

¹Univ. of Oxford ²Univ. of Göttingen

Today's Menu

The Inner Detector (ID) of ATLAS:

- Intrinsic resolutions
- The track-based alignment procedure
- Alignment with cosmic rays (autumn 2008):
 - Main results
- Alignment prospects for 2009+:
 - Impact of misalignments on physics
 - Summary + Outlook
 - **Bonus slides:**
 - (Fixing the momentum scale, monitoring, etc.)

-3-

Alignment of the ATLAS ID Tracker

Alignment of the ATLAS ID Tracker

-4-

Oleg Brandt (Oxford, Göttingen)

Alignment Procedure @ATLAS

- References (+references therein):
 - Si Global χ²: <u>http://cdsweb.cern.ch/record/835270</u>
 - Si Local χ²: <u>http://publications.mppmu.mpg.de/2005/MPP-2005-174/FullText.pdf</u>

-5-

- Si Robust Alignment: <u>http://cdsweb.cern.ch/record/1061129</u>
- TRT global χ²: <u>http://cdsweb.cern.ch/record/1039585</u>

Why Alignment?

- Determine the position of modules:
 - Hardware-based methods (e.g. optical survey)

-6-

Track-based approaches

Alignment of the ATLAS ID Tracker

* MCS: Multiple Coulomb Scattering

Track-Based Alignment: Residuals

Track-based alignment: Optimisation of residual distributions!

Alignment of the ATLAS ID Tracker

-7-

Declared goal for alignment:

- Degradation of tracking parameter resolution by < 20 % due to misalignments!
- **Resulting alignment precision for random misalignments:** ATL-INDET-97-16035
 - **Pixels:** *O*(7 μm)
 - SCT: *O*(12 μm)
 - TRT: **Ο**(30 μm)

- **Pixels:** *O*(500 μm)
- SCT: *O*(100 μm)
- TRT: **Ο**(100 μm)

Alignment Procedure

time scale Full loop: multiples of 24 h on shorter Cross-checks

-10-

Alignment of the ATLAS ID Tracker

Alignment with M8+ Cosmic Ray Real Data

- References (+bonus slides):
 - http://indico.cern.ch/conferenceDisplay.py?confld=50502

Alignment of the ATLAS ID Tracker -11- Oleg Brandt (Oxford, Göttingen)

Alignment with M8+ Cosmic Ray Data

M8+: ATLAS in 24/7 full operation mode Sept.-Dec. 2008!

- Took cosmic ray data
- Many lessons learnt (trigger, timing, noise, DAQ, calibration)

-12-

-15-

MORE plots in the bonus slides...

Oleg Brandt (Oxford, Göttingen)

M8+ Cosmics Alignment: Performance

-16-

- Use track segment matching for alignment validation
- Estimate uncertainty and bias in track parameter reco:
 - Split track in 2 halves
 - Refit each
 - Compare track parameters:
 - d₀, z₀, φ, θ, q/p

M8+ Alignment: Impact Parameter

-17-

MORE plots in the bonus slides...

Alignment of the ATLAS ID Tracker

Oleg Brandt (Oxford, Göttingen)

-19-

MORE plots in the bonus slides...

Alignment of the ATLAS ID Tracker

-20-

MORE plots in the bonus slides...

Alignment of the ATLAS ID Tracker

-21-

MORE plots in the bonus slides...

-22-

MORE plots in the bonus slides...

M8+ Alignment: Quintessence

- We have a good alignment set from M8+ for the ID!
 - Alignment uncertainty in the barrel:
 - Consistent with random misalignments of ~20 μm
- Some beware-s:
 - Validated and well-understood in barrel only
 - Best alignment: upper and lower quadrant of the barrel
 - Performance not directly transferrable to collision data:

-23-

- Well-aligned parts of the detector are the ones with much statistics
 they have a (statistically) bigger influence on the width of performance distributions!
- Typical angle of impact different

Alignment Prospects for 2009

- Disclaimer:
 - The following is what we *believe* to be a *possible scenario* for Inner Detector alignment in 2009...

Oleg Brandt (Oxford, Göttingen)

-24-

2009: Expected Alignment Performance

-25-

- Define two alignment sets:
 - Day 1:
 - Based on M8+ experience
 - Day 100:
 - Initial physics performance

2009: Expected Alignment Performance

- Define two alignment sets:
 - Day 1:
 - Based on M8+ experience
 - Day 100:
 - Initial physics performance
- Gaussian smearing:

	Day-1 Barrel		ay-1 Endcap	
Pixel	20 µm		50 µm	
SCT	20 µm		50 µ m	
TRT	100 µ m		100 µm	
	Day-100 Barrel		Day-100 Endcap	
Pixel	10 µm		10 µm	
SCT	10 µm		10 µm	
TRT	50 µm		50 µm	

Alignment of the ATLAS ID Tracker -26- Oleg Brandt (Oxford, Göttingen)

2009: Expected Alignment Performance

Define two alignment sets:

-27-

Effect of Misalignments: Mz

- Z is standard candle of the SM!
 - Using only Inner Detector for p_T reco
 - Degradation in width:

Oleg Brandt (Oxford, Göttingen)

Summary / Outlook

ATLAS Inner Detector alignment is in ready for collisions:

- Alignment algorithms validated thoroughly with MC
- Alignment infrastructure works well
- Impressive alignment quality achieved with 2008 cosmics!
- Estimated misalignment impact on early SM physics limited
- Great alignment prospects for 2009+:
 - Hope to quadruple cosmics statistics!
 - Expect *better* alignment once *beam* is there:
 - Especially in the ECs!
 - Soon after first *collisions*:
 - Tackle systematics!

Alignment of the ATLAS ID Tracker

Bonus slides

For more details:

- Bonus slides
- https://twiki.cern.ch/twiki/bin/view/Atlas/ApprovedPlotsID
- LHC Alignment Workshop (June 2009)
 - http://indico.cern.ch/conferenceDisplay.py?confld=50502

Algorithms at ATLAS

- References (+references therein):
 - Si Global χ²: <u>http://cdsweb.cern.ch/record/835270</u>
 - Si Local χ²: <u>http://publications.mppmu.mpg.de/2005/MPP-2005-174/FullText.pdf</u>
 - Si Robust Alignment: <u>http://cdsweb.cern.ch/record/1061129</u>
 - TRT global χ²: <u>http://cdsweb.cern.ch/record/1039585</u>

Alignment Algorithms at ATLAS

There are 3 Si + 1 TRT alignment algorithms:

- Global χ^2 :
 - Minimise $\chi^2 \equiv \sum_{\text{tracks}} r^T V^{-1} r$
 - w/r/t alignment parameters:

$$\delta a = -\left(\sum_{\text{tracks}} \frac{dr^T}{da} V^{-1} \frac{dr}{da}\right)^{-1} \sum_{\text{tracks}} \frac{dr^T}{da} V^{-1} r, \quad \text{with} \quad \frac{dr}{da} = \frac{\partial r}{\partial a} + \frac{\partial r}{\partial \pi} \frac{d\pi}{da}$$

Local χ^2 :

$$\frac{dr}{da} = \frac{\partial r}{\partial a} + \frac{\partial r}{\partial \pi} \frac{d\pi}{da}$$

- Similar to Global χ^2 , but with $\frac{dr}{da} = \frac{\partial r}{\partial a}$ $\frac{dr^T}{da}V^{-1}\frac{dr}{da}$ in block-diagonal form, easy soluble, more iter's
- Robust Alignment:
 - Topological distributions of residuals for subdetector alignment
 - Residual and overlap residual distributions for module align't
- TRT Alignment:
 - Similar to the Global χ^2 algorithm
- **References:** past talks + proceedings are listed in:
 - https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasIDAlignPresentations

Eliminating "Neak Mode" deformations

-34-

• References:

• Write-up available soon!

Alignment of the ATLAS ID Tracker

After First Beam: Improving Alignment Performance

- Very soon *O*(day):
 - Decent EC alignment (L1, L2)
- Soon *O*(week):
 - Vertical / horizontal modules: similar alignment performance

-35-

- Decent EC alignment (L3)
- Fairly soon *O*(month):
 - Alignment of somewhat similar quality to CSC...
- Reach limit: systematics dominating:
 - Not understood detector effects:
 - e.g. depletion depth?
 - "Weak Mode" deformations:
 - Leave the χ^2 (almost) unchanged
 - Bias track parameters
 - E.g. "curl" around *Z*

Alignment of the ATLAS ID Tracker

log time

Residual and Track Parameter Monitoring

-36-

Alignment of the ATLAS ID Tracker

M8+ Alignment: Residuals (Pixel)

ATLAS

In all following plots for Si:

- p_T > 2 GeV, |d₀|<50mm, |z₀|<400mm (through pixel *b*-layer)
- Golden" runs: 91885, 91888, 91890, 91891, 91900, NewT

Alignment of the ATLAS ID Tracker

M8+ Alignment: Residuals (SCT, TRT)

In all following plots for Si:

- p_T > 2 GeV, |d₀|<50mm, |z₀|<400mm (through pixel *b*-layer)
- "Golden" runs: 91885, 91888, 91890, 91891, 91900, NewT

no min. p_T, |d₀|<100 mm (through pixel), >45 TRT hits

Alignment of the ATLAS ID Tracker

-38-

Alignment with M8+ Cosmics: Results

In all following plots for Si:

- p_T > 2 GeV, |d₀|<50mm, |z₀|<400mm (through pixel *b*-layer)
- "Golden" runs: 91885, 91888, 91890, 91891, 91900, NewT
- 7 SCT hits, 3 pixel hits, 1 *b*-layer hit

-39-

Alignment with M8+ Cosmics: Results

- In all following plots for Si:
 - p_T > 2 GeV, |d₀|<50mm, |z₀|<400mm (through pixel *b*-layer)
 - "Golden" runs: 91885, 91888, 91890, 91891, 91900, NewT
 - 7 SCT hits, 3 pixel hits, 1 *b*-layer hit

Topological Track Parameter Monitoring

Alignment of the ATLAS ID Tracker

Topological Track Parameter Distr'ns

- In all following plots:
 - "Golden" runs: 91885, 91888, 91890, 91891, 91900, NewT
 - >1 pixel barrel hits
 - >5 SCT barrel hits
 - >25 TRT barrel hits (except Si only tracks)
 - $|d_0| < 40 \text{ mm}$ (through pixel *b*-layer)
 - *p*_T > 1 GeV
 - 5 ns < event phase (timing) < 30 ns</p>
 - quoted resolution is the RMS of the residual distribution of the particular track parameter divided by 2^{-1/2}

-43-

M8+ Alignment: $\langle p \rangle \Delta(q/p)$ vs. p_T

-44-

MORE plots in the bonus slides...

M8+ Alignment: $\langle d_0 \rangle$ vs. d_0

-45-

Alignment of the ATLAS ID Tracker

-46-

MORE plots in the bonus slides...

M8+ Alignment: $\sigma(d_0)$ vs. p_T

M8+ Alignment: $\sigma(\phi_0)$ vs. p_T

M8+ Alignment: σ(θ) vs. η

-49-

M8+ Alignment: $<\Delta d_0 >$ vs. d_0

-50-

Alignment of the ATLAS ID Tracker

Alignment Superstructures ("Levels")

Alignment of the ATLAS ID Tracker

Alignment "Superstructures": Level 1

- Define superstructures of modules:
 - Reflecting the detector geometry + build specifications
 - Typically: superstructure misalignments large!
- Level 1:
 - Pixel detector
 - SCT barrel
 - SCT EC A
 - SCT EC C
 - TRT Barrel (5 DoF)
 - TRT ECs
 - Σ: 7 superstructures
 - Σ: **41 DoF**

Alignment "Superstructures": Level 2

- Define superstructures of modules:
 - Reflecting the detector geometry + build specifications

-53-

- Typically: superstructure misalignments large!
- Level 2:
 - Pixel Barrel: 3 layers
 - Pixel ECs: 2 x 3 disks
 - SCT barrel: 4 layers
 - SCT ECs: 2 x 9 disks
 - TRT barrel: 32 x 3 modules
 - TRT ECs: 2 x 40 disks
 - Σ: 207 superstructures
 - Σ: **1146 DoF**

Oleg Brandt (Oxford, Göttingen)

Alignment "Superstructures": Level 3

- Define superstructures of modules:
 - Reflecting the detector geometry + build specifications
 - Typically: superstructure misalignments large!
- Level 3:
 - Pixel Barrel: 1456 modules
 - Pixel ECs: 2 x 144 modules
 - SCT barrel: 2112 modules
 - SCT ECs: 2 x 988 modules
 - (no TRT structures at L3)*
 - Σ: 5832 modules
 - Σ: 34992 DoF

* L3 for TRT: individual straw alignment. Not planned in the near future...

Alignment of the ATLAS ID Tracker

-54-

Alignment Levels: "Superstructures"

Eta/Ring

- Define superstructures of modules:
 - Reflecting the detector geometry + build specifications

pixel staves (mounted)

- Typically: superstructure misalignments large!
- Not only L1, L2, L3!
 - E.g. pixel barrel staves (122)

-6

0.8

Alignment Levels: "Superstructures"

- **Define superstructures of modules:**
 - **Reflecting the detector geometry + build specifications**
 - **Typically: superstructure misalignments large!**
- Not only L1, L2, L3!
 - E.g. pixel barrel staves (122)

Corrections implemented

-56-

Alignment Levels for Si and TRT

Silicon Alignment Levels								
Geometry Level	Structures (DoFs)	Pixel	Pixel Structures (DoFs)	SCT	SCT Structures (DoFs)			
1	4 (24)	complete pixel detector	1 (6)	1 barrel + 2 endcaps	3 (18)			
1.5	7 (42)	2 barrel half-shells + 2 endcaps	4 (24)	1 barrel + 2 endcaps	3 (18)			
1.6	11 (66)	3*2 barrel half-shells + 2 endcaps	8 (48)	1 barrel + 2 endcaps	3 (18)			
2	31 (186)	3 barrel layers + 2*3 endcap discs	9 (54)	4 barrel layers + 2*9 discs	22 (132)			
2.1	- (-)	-	- (-)	-	- (-)			
2.3	- (-)	-	- (-)	-	- (-)			
2.5	- (-)	-	- (-)	-	- (-)			
3	5832 (34992)	1456 barrel + 2*144 endcap	1744 (10464)	2112 barrel + 2*988 endcap	4088 (24528)			

TRT Alignment Levels						
Geometry Level	TRT	TRT DoFs	comments			
1	1 barrel + 2 endcaps	17	no alignment correction around the global Z-coordinate in the barrel			
2	32*3 barrel modules+ 40*2 endcap wheels	(32x3) x 5 Dof + (40x2) x 6 Dof = 960				

-57-

Alignment of the ATLAS ID Tracker