QCD Jets at the LHC

Leonard Apanasevich University of Illinois at Chicago

on behalf of the ATLAS and CMS collaborations

Outline

- Physics at the LHC
- Jet Reconstruction and Performance
 - Clustering Algorithms
 - Energy Scale Calibration
 - Energy Resolution
 - Focus will be on in-situ methods
- Jet Measurements
 - Underlying Event
 - Jet Shapes
 - Dijet Angular Decorrelation
 - Inclusive Jet Cross Section
 - Dijet Mass and Ratio
 - Dijet Angular Distribution
 - Event Shapes
 - Multi-Jets

Physics at the LHC

- Total cross section ~100-120 mb
- The goal at startup is to re-establish the standard model (i.e., QCD, SM candles) in the LHC energy regime
 - σ(pT>250 GeV)
 - 100x higher than Tevatron
 - Flectroweak
 - 10x higher than Tevatron
 - Тор

16 July 2009

UIC

- 100x higher than Tevatron
- Jet measurements at LHC are important:
 - confront pQCD at the TeV scale
 - constrain PDFs
 - probe a_c
 - important backgrounds for SUSY and BSM searches
 - sensitive to new physics
 - quark substructure, excited quarks, dijet resonances, etc.
- QCD processes are not statistics limited!

(proton - proton)

ь

High p_T Jets at the LHC

pT>1 TeV

5 / pb⁻¹

20 / pb⁻¹

$$\frac{d\sigma}{dP_T} \approx \sum_{a,b} \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}}{dP_T}$$

N _{dijets} / pb ⁻¹ η ₁ , η ₂ <1.3		
Sqrt(s)	M _{jj} >1.4 TeV	M _{jj} >2TeV
10	50 / pb ⁻¹	7.4 / pb ⁻¹
14	140 / pb ⁻¹	20 / pb ⁻¹

For comparison, corresponding numbers from the Tevatron:

EPS 2009, Krakow

N _{jets} /	pb ⁻¹	y <0.8	

N_{jets} / pb⁻¹ |y|<1.3

pT>0.5 TeV

320 / pb⁻¹

860 / pb⁻¹

 $f_{a/A}(x_1)$

Pi

 P_2

Sqrt(s)

10

14

Sqrt(s)	pT>0.5 TeV	pT>1 TeV
2	0.05 / pb ⁻¹	-

ln₄l.	In ₂ <2.4	
	η ₁],	$ \eta_1 , \eta_2 < 2.4$

Sqrt(s)	M _{jj} >1 TeV	M _{jj} >2TeV
2	0.03 / pb ⁻¹	—

Jet Reconstruction at CMS and ATLAS

- Jet algorithms considered:
 - Seedless Cone, R=0.5, 0.7
 - KT, D=0.4, 0.6
 - Iterative Cone, R=0.5 (used in the trigger)
- Jet types:
 - Calorimeter jets (towers input).
 - JetPlusTrack (combined calorimeter and tracker information).
 - Particle Flow jets (particles input).

CMS

- Track jets (track input).

- overall length ~22 m, height ~15 m, weight ~12,500 tons;
- covers about 10 units in $|\eta| < 5$;
- features electromagnetic crystal calorimetry;
- features hadronic scintillator calorimetry (typical e/h ≈1.3-1.5)
- calorimetry (

Energy Flow jets (combined calorimeter and tracker information).

Jet types:

Track jets (track input).

Jet algorithms considered:

Seeded Cone, R=0.4, 0.7

Seedless Cone, R=0.4, 0.7

Calorimeter jets (towers or topological cell clusters input).

Anti KT, D=0.4, 0.6

KT, D=0.4, 0.6

- overall length ~45 m, height ~22 m, weight ~7,000 tons;
- covers about 10 units in $|\eta| < 5$;
- features electromagnetic and hadronic liquid argon calorimetry (e/h≈1.4);
- features hadronic scintillator calorimetry (e/h≈1.4);

Jet Energy Calibration at CMS

- Factorized approach (like Tevatron):
 - offset correction (removes pile-up and noise contribution)
 - relative correction (flattens the jet response in pseudorapidity)
 - absolute correction (flattens the jet response in $p_{\text{T}})$
- Data driven approach:
 - Di-jet balancing
 - y+jet, Z+jet balancing
- Optional corrections:
 - electromagnetic fraction dependence
 - flavor dependence
 - parton level
 - underlying event
- Systematic uncertainty ~10% at startup, improving with accumulating luminosity EPS 2009, Krakow

ATLAS

Jet Energy Calibration at ATLAS

EM or Hadronic scale jets Phi/Eta intercalibration Offset: noise, out-oftime pileup, in-time pileup **Relative Eta** correction Absolute Energy Scale Particle-level calibrated jets

16 July 2009

UIC

Jet calibration procedure starts with calorimeter cells that have been calibrated using test-beam electron data

This is the called EM scale

A comprehensive calibration program using MC simulation is then applied to correct for noncompensation and dead material effects

- This defines the hadronic scale
- These methods have been validated using test-beam single pion data.

Depending on how well the early data agrees with the MC simulation, in-situ methods will start directly from EM-scale or hadronic scale

EPS 2009, Krakow

CERN-OPEN-2008-020

p_{T.3} Threshold (GeV)

- The Asymmetry method is a data-driven technique for measuring the jet p_T resolution and is based upon momentum conservation in the transverse plane
 - Developed and used at DO

16 July 2009

UIC

The jet p_{T} resolutions are derived from the width of the asymmetry distributions between two leading jets

$$A = \frac{(p_T^{jet1} - p_T^{jet2})}{(p_T^{jet1} + p_T^{jet2})} \qquad \left(\frac{\sigma_{p_T}}{p_T}\right) = \sqrt{2}\sigma_A$$

Contributions from additional jets are removed by applying various threshold cuts on the 3rd jet and extrapolate to the $p_{T}^{jet3} = 0$ GeV limit

Jet Resolution at ATLAS and CMS

QCD Jet Measurements

- Study of the track multiplicity and p_T density in "transverse" jet region
 - CDF approach
 - Measurement used to tune MC event generators at the Tevatron
 - Naïve re-scaling of Tevatron will not work

Underlying Event

UIC 16 July 2009

Integrated Jet Shape

16 July 2009

UIC

CMS PAS QCD-08-005

Jet Structure: 2nd Moment of P_T Radial Distribution CMS PAS QCD-08-002

- Complementary method to study jet structure
- Potentially improved systematic uncertainties
 - Largest uncertainty is from energy scale calibration

$$\mathcal{D}R_{jet}^{2}(p_{T}) = \frac{\sum_{C^{*}} \Delta R^{2}(C^{*}, jet) * p_{T}^{C^{*}}}{p_{T}^{jet}}$$

16 July 2009

Dijet Angular Decorrelation

- Measurement of the azimuthal angle between the two leading jets.
- Δφ distribution of leading jets is sensitive to higher order radiation w/o explicitly measuring the radiated jets
- Shape Analysis:

16 July 2009

UIC

$$f\left(\Delta\varphi_{\rm dijet}\right) = \frac{1}{\sigma_{\rm dijet}} \left| \frac{d\sigma_{\rm dijet}}{d\Delta\varphi_{\rm dijet}} \right|$$

- Reduced sensitivity to theoretical (hadronization, underlying event) and experimental (JEC, luminosity) uncertainties

CMS PAS QCD-09-003

Dijet Angular Decorrelation (ii) CMS ATLAS $\frac{1}{\sigma} \frac{1}{d\Delta \phi}$ 1/σ_{dijet} dσ_{dijet}/Δφ_{dijet} [°]≥ 800 GeV (x10⁸) YTHIA6.226 - low ISR ≤ 800 GeV (x10⁶) YTHIA6.226 - increased ISR 10 ≤ 500 GeV (x10⁴) 300 ≤ p HERWIG6.506 $200 \le p_{\tau}^{max} \le 300 \text{ GeV} (x10^2)$ LHC - pp collisions at $\sqrt{s} = 14$ TeV 10 o $120 \le p_{\tau}^{max} \le 200 \text{ GeV}$ 10⁵ 500 < p., max < 1200 GeV (x20) Sim-Data (L=10pb⁻¹) 180 < p_max < 500 GeV 10⁴ 10

1

10

10

10

10

100

120

180

160

ATL-PHYS-PUB-2006-013

140

Systematic uncertainties dominated by jet energy scale and jet energy resolution effects

π

 $\Delta \phi_{\text{dijet}}$

- Inc ISR

--- Dec ISR

5π/6

16 July 2009 UIC

10³

10²

10

10⁻¹

10⁻² 10⁻³

10⁻⁴

10⁻⁵

π/2

CMS Preliminary

CMS-PAS QCD-09-003

 $2\pi/3$

SISCone R=0.5

lyl ≤ 1.1

CMS PAS QCD-08-001

- Important jet commissioning measurement
- Can probe contact interactions beyond the Tevatron reach (2.7 TeV) with 10 pb⁻¹ at 10 TeV
- Main uncertainty: Jet energy scale
 - assume 10% on day 1
- Can be used to constrain PDF's

16 July 2009

EPS 2009, Krakow

QCD

Fractional Deviation from PYTHIA

Ouark Contact Interaction

17

Dijet Mass and Ratio

- The dijet mass distribution will
 be used to search for dijet
 resonances
- The dijet ratio is a simple measure of dijet angular distributions
 - N(|n|<0.7)/N(0.7<|n|<1.3)
 - Sensitive to contact interactions and dijet resonances
 - With ~100 pb-1 @ 14 TeV; discovery potential up to Λ = 7 TeV
- Dijet ratio has low systematic uncertainties and is a precision test of QCD at startup

- LHC will start producing collisions this year!
- After 20 years of R&D, construction, and installation the ATLAS and CMS detectors are ready for data
- First steps: understand detector performance with beam and re-establish the SM
- First measurements will be on QCD analyses
- Small amount of data will be enough to exceed the Tevatron reach
- Rich QCD program at startup and beyond
- New physics might be around the corner!

Backup Slides

Jet Reconstruction Efficiency at CMS

trackJet

(1111111)

- A tag and probe method is used to calculate the calculate efficiency in data and MC.
 - Use Z(→µµ)+jet, Z(→ee)+jet
 or γ+jet events
- If the matching efficiency from data is found to disagree with the MC efficiency, then the MC will be adjusted to match the data distributions
- The true calorimeter jet reconstruction efficiency is obtained by removing the effects of the position resolution on the ΔR matching procedure from the corrected MC jet matching efficiency

Jet Resolution at ATLAS

CERN-OPEN-2008-020

Jet Energy Resolution from MC Truth

• Energy calibrated using "H1-style" cell signal weighting

Underlying Event at ATLAS

Reconstructed

<N_{moks}> in the UE ""> (GeV) in the UE 35 MC 12 MC 30 10 d, 25 8 20 15 Cone - R=0.7 Cone - R=0.7 <N_{tracks}> in the UE <p_tracks > in the UE Û, 200 400 600 800 200 400 600 800 1000 Leading jet E_ (GeV) Leading jet E_{_} (GeV) Ratio <N_{Track}^{Reco}>/<N_{Track}^{MC} 1.8 1.6 1.4 ف 1.2 0.8 0.6 Ratio 0.4 0.4 200 400 600 800 200 400 600 800 1000 Leading jet ET (GeV) Leading jet E_T (GeV)

Reconstructed

Good agreement between reconstructed and generated variables

100

1000

Dijet Angular Distribution

 Angular distributions sensitive to new physics

 $\chi_{dijet} = exp(|y_1 - y_2|)$

- Insensitive to PDFs
- Reduced sensitivity to detector effects
- Errors dominated by JES

