Diboson production at CDF

Viviana Cavaliere for the CDF Collaboration

University of Siena & INFN Pisa

EPS 2009, 16/07/2009

Physics Motivation

- Diboson are unique probe of triple gauge couplings:
 - Sensitive to new physics:
 - ZZZ, ZZ γ , Z $\gamma\gamma$ absent in SM
 - ② TeV with respect to LEP: explores higher energy range
- Significant backgrounds for several interesting processes
- Processes topologically similar to WH, ZH, SUSY.

- \bullet Proton-antiproton collision at $\sqrt{s}=1.96$ TeV
- 36 bunches: crossing time = 396 ns
- Peak luminosity $3.61 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

• About 5.7 fb $^{-1}$ on tape

Improved Lepton Selection

- Lepton acceptance is a key in final states with 3 or more leptons!
- Try to use all tracks and electromagnetic objects found
- Use as much information as possible for each candidate

Electrons:

Muons:

- Central calorimeter
- Forward calorimeter
- w/ or w/o Si-based track
- Central muons with matched muon chamber hits
- (MIP): central and forward region

- Fill in regions not fiducial to calorimeters
- No distinction between e and μ.

- Two leptons (e or μ) with $p_T(l_1) > 20$, $p_T(l_2) > 10 GeV$
- ② Dilepton invariant mass $M_{\rm ll} > 16 {\rm GeV}/c^2$ to reduce heavy flavour backgrounds
- Drell-Yan contamination reduced requiring that the E_T transverse to each lepton is greater than 25 GeV (15 GeV for e μ)

WW Drel	Drell-Yan		
CDF Run II Preliminary	∫L	= 3.6	5 fb^{-1}
Process	Events		
Z/γ^*	79.8	±	18.4
WZ	13.8	\pm	1.9
$W\gamma$	91.7	\pm	24.8
W+jets	112.7	\pm	31.2
ZZ	20.7	\pm	2.8
$t\bar{t}$	1.3	\pm	0.2
Total Background	320.1	±	46.8
WW	317.6	±	54.1
Signal+Background	637.6	±	79.6
Data		654	

 $W \rightarrow l l \nu \nu$

Likelihood ratio formed from Matrix element probabilities

• WW cross section with a precision of less than 15 %.

WW a TGC in 3.6 fb^{-1}

- Two diagrams producing WW: s-channel, and t-channel.
- s-channel is susceptible to anomalous triple gauge couplings: $\Delta K^z, \Delta K^{\gamma}, \Delta g_1^z, \Delta g_1^{\gamma}, \lambda^z, \lambda^{\gamma}$
 - HISZ scheme ties these together to make 3 independent parameters

- Analysis strategy:
 - Take generator level leading lepton p_T distribution from MCFM

WW a TGC in 3.6 fb^{-1}

- Two diagrams producing WW: s-channel, and t-channel.
- s-channel is susceptible to anomalous triple gauge couplings: $\Delta K^z, \Delta K^\gamma, \Delta g_1^z, \Delta g_1^\gamma, \lambda^z, \lambda^\gamma$
 - HISZ scheme ties these together to make 3 independent parameters

- Analysis strategy:
 - Take generator level leading lepton p_T distribution from MCFM
 - Oultiply by leading lepton p_T dependent efficiency function to get expected leading lepton p_T distribution for a given coupling

- Two diagrams producing WW: s-channel, and t-channel.
- s-channel is susceptible to anomalous triple gauge couplings: $\Delta K^z, \Delta K^\gamma, \Delta g_1^z, \Delta g_1^\gamma, \lambda^z, \lambda^\gamma$
 - HISZ scheme ties these together to make 3 independent parameters

- Analysis strategy:
 - 1 Take generator level leading lepton p_T distribution from MCFM
 - Multiply by leading lepton p_T dependent efficiency function to get expected leading lepton p_T distribution for a given coupling
 - It lepton p⊤ distribution

• s-channel is susceptible to anomalous triple gauge couplings: $\Delta K^z, \Delta K^\gamma, \Delta g_1^z, \Delta g_1^\gamma, \lambda^z, \lambda^\gamma$

• HISZ scheme ties these together to make 3 independent parameters

•	Analy	sis	strategy:
---	-------	-----	-----------

- Take generator level leading lepton p_T distribution from MCFM
- Multiply by leading lepton p_T dependent efficiency function to get expected leading lepton p_T distribution for a given coupling
- Sit lepton p_T distribution

	$\Lambda({\rm GeV})$	λ^Z	Δg_1^Z	κ^{γ}
Expected	1.5	(-0.05,0.06)	(-0.04,0.14)	(-0.17,0.30)
Observed	1.5	(-0.17,0.17)	(-0.26,0.35)	(-0.68,0.77)
Expected	2.0	(-0.05,0.06)	(-0.04,0.13)	(-0.15,0.27)
Observed	2.0	(-0.15,0.15)	(-0.25,0.32)	(-0.62,0.67)

p

 $_{\bar{p}}$

- Require 3 e or μ leptons and missing transverse energy
- Sensitive to WWZ vertex coupling
- Unique access to WWZ separately from WW γ

 γ, Z, W

W, Z

W, Z

 $\sigma \left(p\bar{p} \rightarrow \mathsf{WZ} \right) = 4.4 \pm 1.3 \text{(stat.)} \pm 0.2 \text{(sys.)} \pm 0.3 \text{(lum.) pb}$

 $\sigma(WZ)NLO = 3.7pb$

WWZ a TGC

- The Z p_T distribution measured for the observed events is fitted for each of the paramaters: λ , Δg , $\Delta \kappa$. This is done individually as well as two dimensional pairs. The Z p_T distribution is used since it is sensitive to these couplings and it can be measured experimentally.
- Analysis strategy
 - Take generator level leading lepton p_T distribution from MCFM

WWZ a TGC

• The Z p_T distribution measured for the observed events is fitted for each of the paramaters: λ , Δg , $\Delta \kappa$. This is done individually as well as two dimensional pairs. The Z p_T distribution is used since it is sensitive to these couplings and it can be measured experimentally.

Analysis strategy:

- Take generator level leading lepton p_T distribution from MCFM
- Multiply by leading lepton p_T dependent efficiency function to get expected leading lepton p_T distribution for a given coupling

• The Z p_T distribution measured for the observed events is fitted for each of the paramaters: λ , Δg , $\Delta \kappa$. This is done individually as well as two dimensional pairs. The Z p_T distribution is used since it is sensitive to these couplings and it can be measured experimentally.

Analysis strategy:

- Take generator level leading lepton p_T distribution from MCFM
- Multiply by leading lepton p_T dependent efficiency function to get expected leading lepton p_T distribution for a given coupling
- A -2log L is then formed for a binned distribution in data to come from an expected Z pT distribution given any coupling value

• The Z p_T distribution measured for the observed events is fitted for each of the paramaters: λ , Δg , $\Delta \kappa$. This is done individually as well as two dimensional pairs. The Z p_T distribution is used since it is sensitive to these couplings and it can be measured experimentally.

Analysis strategy:

- Take generator level leading lepton p_T distribution from MCFM
- Multiply by leading lepton p_T dependent efficiency function to get expected leading lepton p_T distribution for a given coupling
- A -2log L is then formed for a binned distribution in data to come from an expected Z pT distribution given any coupling value
- 2D limits

ZZ production

• Two decays mode considered

TGC: ZW and ZZ

- $\bullet~$ Trigger Lepton with $E_{\rm T}>20GeV$
- Second lepton with $E_T > 10 GeV$
- $76 < M_{ll} < 106 \text{ GeV}$:suppress non Z production
- 2 jets (cone $\Delta R < 0.4$, $|\eta| < 2.5$)

Z/y

- Selection:
 - $\bigcirc \not E_{T} > 60 \text{ GeV}$
 - 2 exactly two jets with $E_T > 25$ Gev and $\eta < 2.0$
- Select jj+MET events
 - Benefited from L2 met/cal trigger upgrade (doi: 10.1109/NSSMIC.2006.354160)
- Acceptance to νν and lν events (WW, WZ, ZZ)
- QCD rejection: MetModel
 - Reduced to only 16% out of selected events

- Remaining QCD: based on $\Delta \varphi(calMET trkMET)$
- EWK mJJ shape: checked with $\gamma+jj \rightarrow$ significantly reduces systematics

First observation

Parameter	Fitted value
Jet energy scale, JES	0.985 ± 0.019
Yield of EWK background events	$36,140\pm1230$
Yield of MJB background events	7249 ± 1130
Yield of Diboson candidates	1516 ± 239

 $\begin{array}{l} \sigma(WW+WZ+ZZ) = \\ 18.0 \pm 2.8({\rm stat}) \pm 2.4({\rm syst}) \pm \\ 1.1({\rm lumi}){\rm pb} \\ {\rm SM:} \ 16.8 \pm 0.5 {\rm pb} \ ({\rm MCFM} + \\ {\rm CTEQ6M}) \end{array}$

5.3 σ significance PRL just submitted: arXiv:0905.4714

Leptonic W candidate:

- one tight lepton (electron or muon) with $E_T > 20$ GeV, $\eta < 1.2$ and $\not{E}_T > 25$ GeV
- M_T (W) > 30 GeV/c² to get rid of large part of the QCD background

Hadronic W candidate:

- At least 2 jets (reconstructed using JETCLU, R = 0.4) with:

 - **2** $|\eta| < 2.4$
 - $\bigcirc \Delta \eta < 2.5$
 - Electron removal

- Two different approaches used:
 - First approach uses the shape of M_{jj} of the two leading jet to look for a clear resonance

- Use $p_{\mathsf{T}} > 40~\text{GeV/c}$ cut to smoothen mjj distribution
- Binned fit to extract signal: template EWK, QCD and signal.
- We estimate combining the two decays: $1070 \pm 232 \text{ (stat.)} \pm 86 \text{ (syst)}$ $WW/WZ \rightarrow lvjj \text{ events, for 4.61 } \sigma \text{ where}$ 4.9 was expected.
- Finally, we measure:

 $\sigma_{WW/WZ} = 14.4 \pm 3.1 (\texttt{stat.}) \pm 2.2 (\texttt{syst.}) \texttt{pb}$

- Two different approaches used:
 - First approach uses the shape of M_{jj} of the two leading jet to look for a clear resonance

- Use $p_{\mathsf{T}} > 40 \text{ GeV/c}$ cut to smoothen mjj distribution
- Binned fit to extract signal: template EWK, QCD and signal.
- We estimate combining the two decays: $1070 \pm 232 \text{ (stat.)} \pm 86 \text{ (syst)}$ $WW/WZ \rightarrow lvjj \text{ events, for 4.61 } \sigma \text{ where}$ 4.9 was expected.
- Finally, we measure:

 $\sigma_{WW/WZ} = 14.4 \pm 3.1 (\texttt{stat.}) \pm 2.2 (\texttt{syst.}) \texttt{pb}$

Matrix Element method in 2.7 fb^{-1}

- Second approach uses a multivariate technique to exploit all the information in the event: expect more sensitivity
- Oifferent selection since the shapes of the two discriminants are different
 - Exactly two tight jets with $E_T > 25$ GeV and $\eta < 2.0$
 - Harder cut on $M_T(W) > 70 \text{GeV}/c^2$ and $\not{E}_T > 40$ GeV
 - Use matrix element calculation to build discriminant (EPD) to separate signal and background
 - Likelihood fit to extract signal.

WW+WZ CDF Run II Preliminary, L=2.7 fb • Found a significance of 5.4 σ where 10⁴ 5.1 was expected : First observation Z+iets 10 Candidate Events 10² + Data $\sigma_{WW/WZ} =$ 10 17.7 ± 3.1 (stat.) ± 2.4 (syst.)pb 10⁻¹ 16 / 17

Conclusion

- Measuring processes with cross sections similar to Higgs!
- New limits set on anomalous couplings
- First observation of diboson with leptons+jets:
 - Opens the way to diboson studies with jets