Cross-Section Measurements at Belle

Burkard Reisert, Max-Planck-Institut für Physik, München

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Introduction

- Three new Measurements
 - e⁺e⁻ →VP @ √s=10.58 GeV
 - $e^+e^- \rightarrow D^0D^{*-}\pi^+$ in ISR events
 - $\eta \pi^0$ -production in $\gamma \gamma$ collisions

Processes at a B-Factory

Reisert EPS09

Burkard

KEKB at Tsukuba

The Belle Detector

Reisert EPS09

Exclusive Vector-Pseudoscalar Production in e⁺e⁻-Annihilation

High statistics data samples allow for a study of rare exclusive two-body process in e⁺e⁻ annihilation,

example: associated production of Vector & Pseudoscalar Mesons

Special interest as double charm production e⁺e⁻→ J/Ψη_c (i.e. VP) was observed with unexpectedly high cross sections by Belle (Phys.Rev.Lett.89, 142001) and BaBar (Phys. Rev.D72, 031101)

IPP Munich

- Study ee→φη(φη') i.e. charm quarks replaced by strange quarks and compare to ee→ρη(ρη')
- Measurements (φη, ρη, ρη') of at different center-of-mass exist (DM1, CLEO, BaBar(ISR), BES) → Study energy dependence of cross section

$ee \rightarrow VP$: Selection & Cross Section

Selection:

- events with low track multiplicity: n(track) = 2 or 4, veto $ee \rightarrow \mu\mu$
- all tracks from vertex region with Σ_{Tr} charge = 0
- more than 1 track with $p_T > 0.5$ GeV/c, all track $p_T > 0.1$ GeV/c
- photons: E_{γ} >200 MeV, veto γ 's from π^0
- VP energy difference in cms ΔE within [-0.3 +0.2 GeV]
- V P back-to-back $\Delta \phi > 175^{\circ}$

Cross Section:

PP Munic

Burkard Reisert EPS09 N_{sia}: Number of signal events from unbinned 2-dim. fit

 $\sigma = \frac{N_{Sig}}{LBr_{V}Br_{P}\varepsilon}$

- L: Luminosity on resonance Y(4S) L= 516 fb⁻¹, off resonance (-60MeV) L= 58 fb⁻¹
- e: Efficiency Simulation of $ee \rightarrow VP$ with $J^P=1^-$ initial state
- Br: Branching fractions of V and P to reconstructed final states (PDG)

$ee \rightarrow VP$: Event yields

$ee \rightarrow VP$: Cross Section Extraction

Extraction of number of observed signal events by 2-dimensional fit

Signal on Y(4S) consistent with **Off resonance signals** →Limits for branching fractions $Y(4S) \rightarrow VP$ (consistent with 0 set upper limits (90% CL)

> Y→\$(1.8 10⁻⁶) φη' (4.3 10⁻⁶) ρη (1.3 10⁻⁶) ρη' (2.5 10⁻⁶)

 $\rho \eta' (\pi^+ \pi^- \gamma)$

on'(comb.)

 72.1 ± 15.0

7.6

14.3

Burkard Reisert EPS09

Number of signal events, signal significance efficiencies, cross sections

with tions with 0) -)	Entries / 20 MeV/c ² Entries / 2.5 MeV/c ² m(K	$\rightarrow K^{+}$ $^{15} 1^{+}$ $^{+} K^{-} (GeV$ $ 1^{-}$ $ $	\overline{K}^{-}	Entries 10 MeV (GeV/c ²) $\eta \rightarrow \gamma \gamma$ $\eta \rightarrow \gamma \gamma$ $\eta \rightarrow \gamma \gamma$ $\mu \rightarrow \eta \pi^{+} \eta$ $\eta \rightarrow \eta \pi^{+} \pi^{-}$ $\eta' \rightarrow \eta \pi^{+} \pi^{-}$ $\eta' \rightarrow \eta \pi^{+} \pi^{-}$			
Process	$N_{ m signal}$	Σ	$\varepsilon, \%$	σ , fb	$\delta_{\text{sys}}^{\text{tot}}$ (%)	Ē	
$\phi\eta(\gamma\gamma)$	14.6 ± 4.3	8.0	14.1	1.1 ± 0.3	5.3	[
$\phi \eta' (\eta \pi^+ \pi^-)$	3.0 ± 1.7	12.0	0.917	2.9 ± 1.6	7.4		
$\phi \eta'(\pi^+\pi^-\gamma)$	19.6 ± 4.5	30.0	5.36	4.9 ± 1.1	6.2		
$\phi \eta'(ext{comb.})$				4.3 ± 0.9			
$ ho\eta(\gamma\gamma)$	116.3 ± 20.2	9.2	23.2	2.5 ± 0.4	5.0		
$ ho\eta'(\eta\pi^+\pi^-)$	17.9 ± 4.8	7.9	3.58	2.2 ± 0.6	7.0		

 3.3 ± 0.7

 2.7 ± 0.5

8

5.9

radiative correction: $\sigma_0 = \frac{\sigma}{1+\delta}$ 1+ $\delta = 0.809 (E_{\gamma^{rad}} < 0.3 \text{ GeV})$ applied

EPS09

9

$e^+e^- \rightarrow D^0 D^{*-} \pi^+$ in ISR

Possible decay channel for "charmonium like" resonances Y(4260), ψ (4415) → provides constraints on decay models

NPP Munich

Burkard Reisert EPS09 Full reconstruction on L = 695 fb⁻¹: $D^0 \rightarrow K^-\pi^+, K^+K^-, K^-\pi^+\pi^-, K_s\pi^+\pi^-, K^-\pi^+\pi^0$ $D^{*-} \rightarrow D^0$ + slow pion π track, no extra tracks

 π^+

$e^+e^- \rightarrow D^0 D^{*-} \pi^+$ in ISR

ISR enables scan of $4 < M(D^0D^{*-}\pi^+) < 5.2 \text{ GeV}$ (threshold to just below B-meson decay)

Events consistent with ISR, but γ_{ISR} not necessarily detected

- 1.) γ_{ISR} not detected
 →Recoil against Masszero object
- 2.) γ_{ISR} in detector acceptance

MPP Munich

Burkard

Reisert EPS09 \rightarrow M(D⁰D^{*-} $\pi^+\gamma$) ~ E_{cm}

$e^+e^- \rightarrow D^0 D^{*-} \pi^+$ in ISR

Fitting the Mass Spectrum

MPP Munich

Burkard Reisert EPS09 $σ(e^+e^- → ψ(4415)) × Br(ψ(4415) → D^0D^{*-}π^+) < 0.8 \text{ nb at } 90\% \text{ CL}$ $Br(ψ(4415) → D^0D^{*-}π^+) < 11\% \text{ at } 90\% \text{ CL}$

Fitting the Mass Spectrum

	Upper Limit (90% CL)		Y(4350)	Y(4660)	X(4630)
Ŋ	$\sigma(e^+e^- \to X) \times \mathcal{B}(X \to D^0 D^{*-} \pi^+) \ \mathrm{nb}$	0.36	0.55	0.25	0.45
prelimina	$\mathcal{B}_{\rm ee} \times \mathcal{B}(X \to D^0 D^{*-} \pi^+) $ *10 ⁻⁶	0.42	0.72	0.37	0.66
	$\mathcal{B}(X \to D^0 D^{*-} \pi^+) / \mathcal{B}(X \to \pi^+ \pi^- J / \psi)$	9			
	$\mathcal{B}(X \to D^0 D^{*-} \pi^+) / \mathcal{B}(X \to \pi^+ \pi^- \psi(2S))$		8	10	

MPP Munich

Study of $\gamma\gamma \rightarrow \eta\pi^0 \rightarrow \gamma\gamma \gamma\gamma$

EPS09

Study of $\gamma\gamma \rightarrow \eta\pi^0$: Cross section

Differential Cross section

Angular dependence of the cross section in selected W regions

Ap. Ag > it

MPP Munich

Burkard Reisert EPS09

$$\frac{d\sigma}{d\Omega}(\gamma\gamma \to \eta\pi^0) = |SY_0^0 + D_0Y_0^2 + G_0Y_4^0|^2 + |D_2Y_2^2 + G_2Y_4^2|,$$

with *SDG* Amplitudes & $|Y_J^m|$ spherical harmonics

Good fit already Without G_J^m

 $\gamma\gamma \rightarrow \eta\pi^0$: Low Mass Region

Study of resonances

MPP Munich

Burkard Reisert EPS09

18

$\gamma\gamma \rightarrow \eta\pi^{0:}$ high mass region

¶∆_#∆_{ያ≽≴≮} MPP Munich

Summary

- Measurements of cross sections of exclusive ee→VP processes: ee→ φη, ee→ φη', ee→ ρη, ee→ ρη'
 - No universal energy dependence found
 - Light cone predictions fall short to describe data in all details (energy dependence and relative magnitude)
 - hep-ex 0906.4214 (submitted to PLB)
- First measurement of $ee \rightarrow D^0 D^{*-}\pi$ + in range 4.0 <m<5.2 GeV
 - values of amplitudes of Y(4260), Y(4350), Y(4660) and X(4630) consistent with 0 within errors
 - □ Present data do not support Y(4260) → D⁰D*-π⁺ decays predicted by hybrid models
 - preliminary study
- Differential cross sections of the process $\gamma\gamma \rightarrow \eta\pi^0$ measured for 0.84<W<4.0 GeV and $|\cos\theta^*|<0.8$
 - □ Resonances $a_0(980)$, $a_2(1320)$ and $a_0(Y)$ near 1320
 - Energy and angular dependencies for high W hep-ex 0906.1464 (submitted to PRD)

MPP Munich

Acknowledgement

 High-statistics study of ηπ⁰-production in two photon collisions
 Y. Watanabe, S. Uehara

 Measurement of cross sections of exclusive e⁺e⁻→VP processes at √s=10.58 GeV M. Shapkin, K. Belous

IPP Munich