Top cross section and SM properties at CDF

Alison Lister

Université de Genève

For the CDF collaboration

Tevatron Performance

- Accelerator complex breaking records all the time
 Peak Luminosity record 3.18·10³² cm⁻²sec
 Weekly integrated luminosity record 57 pb⁻¹
 Total integrated luminosity delivered ~6.9 fb⁻¹
 - ~5.7 fb⁻¹ recorded by each experiment

Thanks to the Accelerator Division!

Symmetric around beam axis Front-back symmetric CDF

CAAAAAA

~100 tons

Dedicated silicon detector for secondary vertex tagging

4 Tesla solenoid

Muon coverage up to $|\eta| \sim 1.1$

Electron reconstruction up to $|\eta| \sim 2.8$

EPS09, 16 July 09

Older values assume $m_{tt} = 175 \text{ GeV/c}^2$ New values assume $m_{tt} = 172.5 \text{ GeV/c}^2$

Top Quark Pair Production Cross Section

New measurements since summer 2008All hadronic top cross section

 Ratio of top to Z cross section in lepton + jets channel

$$\sigma_{t\bar{t}} = \frac{N_{data} - N_{bck}}{\epsilon \cdot A \cdot L}$$

All Hadronic

Event selection (same as used for the mass measurement)

- No lepton
- ≥ 6-8 jets
 - ΔR_{ii} > 0.5
 - 1 or \geq 2 b-tags
- Low Missing E_T
- Neural Network output > fixed value
 - 13 input variables

2.9 fb⁻¹

 Obtain cross section from likelihood fit to reconstructed top mass

$$\chi^{2} = \frac{\left(m_{jj}^{(1)} - M_{W}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(m_{jj}^{(2)} - M_{W}\right)^{2}}{\Gamma_{W}^{2}} + \frac{\left(m_{jjb}^{(1)} - m_{t}^{rec}\right)^{2}}{\Gamma_{t}^{2}} + \frac{\left(m_{jjb}^{(2)} - m_{t}^{rec}\right)^{2}}{\Gamma_{t}^{2}} + \sum_{i=1}^{6} \frac{\left(p_{T,i}^{fit} - p_{T,i}^{meas}\right)^{2}}{\sigma_{i}^{2}}$$

All Hadronic

- Systematic uncertainties evaluated from pseudo-experiments
 - Dominated by
 - Jet Energy Scale
 - Generator
- Fit performed at
 - New standard top mass point
 - M_{top} = 172.5 GeV/c2

σ_{tt} = 7.2±0.5(stat)±1.4(syst)±0.4(lumi) pb

- Top Mass and JES value from mass measurement
 - M_{top}=174.8^{+2.7}_{-2.8} GeV/c²
 - ΔJES = -0.3

EPS09, 16 July 09

Lepton + Jets

Event selection

- ≥ 3 jets
 - E_T ≥ 20

1 isolated electron or muon

- p_T ≥ 20 GeV/c
- High Missing E_T
 - ME_T ≥ 20 GeV

EPS09, 16 July 09

Neural Network Fit

Alison Lister, UniGe

2.8 fb⁻¹

Neural Network Fit

Background model

- Non-W (QCD) from data
 - Normalisation constrained by fit to Missing transverse energy
- W+jets (ALPGEN) used to model all other backgrounds
 - Normalisation floated freely

σ_{ttbar} = 7.1 ± 0.4 (stat) ± 0.4 (syst) ± 0.4 (lumi) pb

Dominant systematics (estimated from pseudo-experiments)

- Luminosity (5.8%)
- Jet Energy Scale (3.2%)
- ttbar generator (2.7%)

Lepton + Jets B-Tagged 2.7 fb-1

Tighten event selection

- Missing $E_T \ge 25$ GeV
- ≥1 heavy flavour tagged jet
- H_T≥ 250 GeV
- Background estimation
- Estimate backgrounds for a given σ_{tt}
- Vary σ_{tt} by small amount
- Iterate until find minimum of log likelihood distribution as a function of σ_{tt}

- Dominant systematics
 - Heavy flavour tagging
 - Heavy flavour corrections
 - Luminosity

σ_{tt} = 7.2 ± 0.4 (stat) ± 0.5 (syst) ± 0.4 (lumi) pb

EPS09, 16 July 09

Ratio: σ_{tt} / σ_Z

- σ_z well known theoretically
 - σ_{Z->||} (theory) = 251.3 ± 5.0 pb
- Z well modeled in data
 - Small background
 - $\sigma_{Z->||} = 256.8 \pm 1.1(\text{stat}) \pm 7.0(\text{sys}) \pm 15.1(\text{lumi})$
- Luminosity uncertainty cancels out in ratio of ttbar to Z cross section if use same triggers and data periods
 - o_{ttbar} = 7.0 ± 0.4 (stat) ± 0.4 (sys) ± 0.4 (lumi)
 pb

$$\sigma_{tt} = 6.8 \pm 0.4(stat) \pm 0.4(syst) \pm 0.1(theory) pb$$
 $\Delta \sigma_{tt} / \sigma_{tt} = 8\%$
 $\sigma_{tt (b-tagged)} = 7.0 \pm 0.4(stat) \pm 0.6(syst) \pm 0.1(theory) pb$
 $\Delta \sigma_{tt} / \sigma_{tt} = 10\%$

Single measurement better than summer 2008 combination (same luminosity)

Similar total uncertainty to theoretical predictions

EPS09, 16 July 09

Spin Correlations Dilepton Channel

Spin-Spin Correlations

- Top quarks do not hadronise before they decay
 - Can observe original polarization from when they are produced
- Spin-spin correlations at ttbar production can be observed through correlations between flight direction of of decay products
- Can measure κ from angular distribution of θ⁺ vs θ⁻ and θ_b vs θ_{bbar}

$$\frac{1}{2} - \frac{d^2\sigma}{d^2\sigma} = \frac{1 + \kappa \cos\theta_+ \cos\theta_-}{d^2\sigma}$$

 $\sigma \, d \cos \theta_+ d \cos \theta_-$

- Standard Model
 - qqbar -> g ->ttbar: κ =1
 - At Tevatron expect κ ~0.8

Spin-Spin Correlations

Event selection

- 2 electrons or muons
 - p_T / E_T>20 GeV
 - ≥1 isolated
 - ≥1 central
 - Opposite charge
- Missing $E_T > 25$
 - MET >50 if angle METlepton/jet < 20°
- ≥2 jets (E_T > 15 GeV)
- H_T > 200 GeV

Dominant backgrounds

- WW/ZZ/WZ
- Drell-Yan
- W+jets
 - 1 jet fakes a lepton
- Can ignore Wγ

Results

- Minimum unbinned likelihood fit to obtain κ
- Feldman-Cousins confidence intervals
- Statistics limited

Dominant systematics

- Background uncertainty
- PDFs

 $M_{top} = 175 \text{ GeV/c}^2$

• κ value flat wrt top mass

$κ = 0.32^{+0.55}_{-0.78}$ -0.455 < κ < 0.865 (68% CL)

W-Helicity Measurements + Combination

Phys.Lett.B674:160-167,2009

W-boson Helicity in Top Quark Decays

- Decay products preserve helicity content of underlying weak interaction
- Probe the V-A structure of the weak interaction in the top-quark decay
- Helicity fractions ≠ SM → new physics
- e.g. V+A component in weak interaction, anomalous couplings in top-decay.

- Angle between direction of charged lepton in the W-boson rest frame and direction of Wboson in the top-quark rest frame
- To calculate θ* we have to reconstruct the four-vectors of top-quark, W-boson, and charged lepton

SM prediction for $m_t=175 \text{ GeV/c}^2$, $m_b=0$

$$F_{0} = \frac{m_{t}^{2}}{2m_{W}^{2} + m_{t}^{2}} = 0.7$$

$$F_{-} = 0.3$$

$$F_{-} = 0.0$$

longitudinal

left-handed

right-handed

EPS09, 16 July 09

cosθ* Reconstruction

- Unbinned likelihood fit to expected distributions
- Then correct for acceptance effects

- Use theoretically predicted # events in each bin at particle level
- Convolute acceptance and resolution effects
- Get expected number events at detector level

$$\frac{dN}{d\cos\theta^*} = F_{-} \cdot \frac{3}{8} \left(1 - \cos\theta^*\right)^2 + F_{0} \cdot \frac{3}{4} \left(1 - \cos^2\theta^*\right) + F_{+} \cdot \frac{3}{8} \left(1 + \cos\theta^*\right)^2$$

EPS09, 16 July 09

Fit Results

All values consistent with SM predictions

- F⁰ with F⁺ = 0.0
 - Template: $F^0 = 0.59 \pm 0.11 \pm 0.04$
 - Convolution: $F^0 = 0.66 \pm 0.10 \pm 0.06$
 - Combination: $F^0 = 0.62 \pm 0.10 \pm 0.05$
- F⁺ with F⁰ = 0.7
 - Template: F⁺ = -0.04 ± 0.04 ± 0.03
 - Convolution: $F^+ = 0.01 \pm 0.05 \pm 0.03$
 - Combination: F⁺ = -0.04 ± 0.04 ± 0.03
- Simultaneous fit of F⁰ and F⁺
 - Template
 - $F^0 = 0.65 \pm 0.19 \pm 0.04$
 - F⁺ = -0.03 ± 0.07 ± 0.03
 - Convolution
 - $F^0 = 0.38 \pm 0.21 \pm 0.07$
 - F⁺ = 0.15 ± 0.10 ± 0.05
 - Combination

EPS09, 16 July 09

- $F^0 = 0.66 \pm 0.16 \pm 0.05$
- F⁺ = -0.03 ± 0.06 ± 0.03

Alison Lister, UniGe

20

http://www-cdf.fnal.gov/physics/new/top/public_tprop.html

	Value	Lum fb ⁻¹	SM value	SM- like
M _{top}	have to wait until tomorrow ©		N/A	Yes
σ_{ttbar}	7.0 \pm 0.3 \pm 0.4 \pm 0.3 \pm 0.4 pb @M _{top} = 175 GeV/c ²	2.8	6.7	Yes
W-helicity	$F^{0} = 0.66 \pm 0.16 \pm 0.05$ F ⁺ = -0.03 \pm 0.06 \pm 0.03	1.9	$F^{0} = 0.7$ $F^{+} = 0.0$	Yes
Spin Correlations	-0.455 < κ < 0.865 (68% CL)	2.8	κ = 0.8	Yes
A _{FB}	$A_{FB} = 0.19 \pm 0.07(stat) \pm 0.02(syst)$	3.2	A _{FB} = 0.05 (NLO)	Yes
Width	Γ_{top} < 13.1 GeV @ 95% confidence level	1.0	1.5 GeV	Yes
Lifetime	<i>cτ_t</i> < 52.5 μm @ 95% C.L.	0.3	∼10 ⁻¹⁶ m	Yes
Branching Ratio	BR(t->Wb)/BR(t->Wq)> 0.61 @ 95% C.L.	0.2	~100%	Yes
Gluon fusion fraction	$F_{gg} = 0.53 \pm 0.36 \pm 0.08$	2.0	~15% (NLO)	Yes
Top charge	Exclude top charge of -4/3 with 87% C.L.	1.5	2/3	Yes

EPS09, 16 July 09

Top Physics is "obviously" THE sexiest topic at the Tevatron

EPS09, 16 July 09

Combination: Summer 08 2.8 fb⁻¹

Assuming top mass of 175 GeV/c^2

- Total CDF uncertainty 9%
- Latest theory uncertainty 8%

New measurements since then

- All hadronic top cross section
- Ratio of top to Z cross section in lepton + jets channel
 - Neural Network fit

Will be updated soon...

EPS09, 16 July 09

Forward-Backward Asymmetry in ttbar Production

Update of measurement in ppbar rest frame using top/anti-top rapidity rather than θ

Charge Asymmetry

SM

Asymmetry caused by interference of ME amplitudes for same final state

•

- Predictions in parton rest frame
- tt (general)
 - A_{NLO} = 4-7%
 - A_{LO} = 0%

- (J. Kühn et al.:
- arXiv:0709.1652)

- tt + g
 - A_{NLO} = -(0-2)%
 - A_{LO} = (9-10)%
- (P. Uwer et al.: hep-ph/0703120)

- Test of discrete symmetries of strong interaction at high energy
- Significant deviations would be an indication of new physics
 - E.g. Z' or axigluons
- Assume CP invariance A_{FB} asymmetry → charge asymmetry

EPS09, 16 July 09

- Fully reconstruct L+J events
 - ≥1 b-tag
 - Minimum chi² fit
- Look at angle between hadronically decaying top and proton direction
- Multiply by charge of lepton on other side
- A_{FB} > 0 means net top current in the proton direction

Unfold observed distribution

- Subtract backgrounds
 - Some have asymmetry
- Unfold for trigger and acceptance effects
- Unfold for detector bias
 - Bin migration roughly symmetric

 $A_{FB} = 0.193 \pm 0.065 \text{ (stat) } \pm 0.024 \text{ (sys)}$

EPS09, 16 July 09

Dependence of A_{FB} on M_{ttbar} cut

Do forward and backward events have different M_{ttbar} distributions?

- NLL calculations predict some small dependence on M_{ttbar}
- Presence of structure ("bump"/enhancement) in spectrum could be sign of new physics

EPS09, 16 July 09

Dependence of A_{FB} on M_{ttbar} cut

Look at A_{FB} as a function of the minimum/maximum cut on M_{ttbar}

- No significant sign of M_{ttbar} dependence.... Yet [©]
- e.g. Z' would have an invariant mass dependence

EPS09, 16 July 09

Results

$A_{FB} = 0.193 \pm 0.065 \text{ (stat) } \pm 0.024 \text{ (sys)}$

- Cross check observed distribution with parametrisation of asymmety
 - 1+A cos(θ)
 - Min log likelihood as a function of asymmetry
 - A_{FB} = 0.173 ± 0.052
 - Consistent with measurement

Previous result (1.9 fb⁻¹) $A_{FB} = 0.17 \pm 0.08$