Measurement of Di-Boson Production at LHC

Eyal Brodet Tel-Aviv University On behalf of the ATLAS and CMS Collaborations

Leading Di-Boson Production

Di-Boson: WW, WZ, ZZ Where V = Vector Boson Triple gauge diagram: forbidden for ZZ in SM

Di-Boson Total Cross Sections

WW = 111.6pb

measurable at al low luminosity

- WZ = 47.8pb
- ZZ = 14.8pb

measurable at high luminosity

Results: cern-open-2008-020 Note: all studies except where mentioned otherwise use leptonic decays of W and Z at pp at CM energy of 14TeV Motivation and Di-Boson Studies at LHC

- Test SM at the highest LHC energy
- Background for Higgs search
- Measure cross sections
- Measure triple gauge couplings
- Measure polarization of bosons

Cross Sections Measurements

- Possible to measure at early stage (e.g. for WW and WZ)
- Need relatively low luminosity
- Precision will improve with time
- Need to know well luminosity and structure functions

WW Cross Section Measurement with CMS

Main Cuts:

- 2 opposite sign leptons with Pt>20GeV
- Missing Energy
- >45GeV
- Di-lepton mass NOT on Z mass
- Jet Veto: Et >20GeV

For L = 100pb^{-1} with 10 TeV

Result from: CMS PAS EWK-09-002

ZZ Cross Section Measurement

Main cuts:

- 4 Leptons with
 Pt > 5GeV
- Rapidity<2.7</p>
- Pair leptons to be on Z mass
- Almost no background

For L = 10 fb⁻¹

Signal and Background for Di-Boson with ATLAS for 1fb⁻¹

Result from: CERN-OPEN-2008-020

Diboson mode	Signal	Background	Signal eff.	σ_{stat}^{signal}	<i>p</i> -value	Sig.
$W^+W^- \rightarrow e^{\pm} v \mu^{\mp} v$	347±3	64±5	12.6% (BDT)	5.4%	$3.6 imes10^{-166}$	27.4
$W^+W^- \rightarrow \mu^+ \nu \mu^- \nu$	$70{\pm}1$	17 ± 2	5.2% (BDT)	12.0%	$8.8 imes10^{-30}$	11.3
$W^+W^- \rightarrow e^+ v e^- v$	52 ± 1	$11{\pm}2$	4.9% (BDT)	13.9%	$1.9 imes10^{-24}$	10.1
$W^+W^- \rightarrow \ell^+ \nu \ell^- \nu$	103 ± 3	17 ± 2	2.0% (cuts)	9.9%	$1.4 imes10^{-54}$	15.5
$W^{\pm}Z \rightarrow \ell^{\pm} \nu \ell^+ \ell^-$	128 ± 2	16 ± 3	15.2% (BDT)	8.8%	$3.0 imes10^{-76}$	18.4
	53 ± 2	8 ± 1	6.3% (cuts)	13.7%	$3.1 imes10^{-30}$	11.4
$ZZ \rightarrow 4\ell$	17 ± 0.5	2 ± 0.2	7.7% (cuts)	24.6%	$6.0 imes10^{-12}$	6.8
$ZZ ightarrow \ell^+ \ell^- \nu ar u$	10 ± 0.2	5 ± 2	2.6% (cuts)	31.3%	$7.7 imes10^{-4}$	3.2

WZ Cross Sections Measurement with CMS

Split into W⁺Z and W⁻Z (total 47.8 pb)
Focus at fully leptonic decay mode

Main feature: 3 isolated leptons

For 300 pb⁻¹ get about 35 signal events With 40% background

WZ Cross Section Measurement with CMS

Main Cuts:

- 3 leptons Pt>20
- Transverse Wmass > 50GeV
- 2 leptons on Z mass: 50-120 GeV

Figure 3: Z^0 candidate invariant mass for all four channels combined, normalized to integrated luminosity of 300 pb⁻¹.

Significance as a function of luminosity in the WZ case

Triple Gauge Couplings

- The most general WWγ, WWZ effective Lagrangian has 14 couplings
- Using only C and P conserving terms and assume QED gauge invariance we are left with 5 couplings:

TGC values according to SM:

 $g_1^Z = 1, \ k_{\gamma,Z} = 1$

Triple Gauge Couplings

- Look at WW process
- Transverse mass distribution
- Result from ATLAS csc book:
 - CERN-OPEN-2008-020

Comparison Between TGC Limits of LHC, Tevatron and LEP2: 95%CL

ATLAS for 30 fb⁻¹

D0 for 0.16 fb⁻¹

LEP2:

$$\Delta g_1^{Z} = [-0.14, 0.25] \qquad \Delta g_1^{Z} = [-0.051, 0.034]$$

$$\Delta k_{\gamma} = [-0.056, 0.51] \qquad \Delta k_{\gamma} = [-0.88, 0.96] \qquad \Delta k_{\gamma} = [-0.105, 0.069]$$

$$\lambda_{\gamma} = [-0.052, 0.100] \qquad \lambda_{\gamma} = [-0.2, 0.2] \qquad \lambda_{\gamma} = [-0.059, 0.026]$$

With constraints:

$$\Delta k_{z} = \Delta g_{1}^{z} - \Delta k_{y} \tan^{2} \theta_{W}$$

$$\lambda_Z = \lambda_\gamma$$

Neutral Triple Gauge Couplings

In ZZ Case:

Forbidden in SM at Tree level

ATLAS Study Results Likelihoods and 95% C.L

Results from: ATL-PHYS-PUB-2007-015

Comparison to LEP2

- ZZ: Great improvement from LEP2
- The improvement in ZZ is due to strong energy dependence of anomalous TGC contribution to ZZ production
- E.g. F^Z₄ limit 0.005 at LHC, c.f. 0.3 at LEP2

ZZ and WZ Polarization

- Z,W polarization: longitudinal and transverse
- At LHC unique opportunity to observe and study longitudinal Z,W
- Do this by studying the angular distribution of the Z,W decay products, $\cos \theta_{\rm I}^{*}$

Angular variables

Looking at $\cos \theta_1$ for e.g. WZ:

Angular distribution in the W rest frame: $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{\rm l}} = \rho_{--} \frac{3}{8} (1 + \cos\theta_{\rm l}^{*})^{2} + \rho_{++} \frac{3}{8} (1 - \cos^{*}_{\rm l})^{2} + \rho_{00} \frac{3}{4} \sin^{2}\theta_{\rm l}^{*}$ Angular distribution in the Z rest frame: $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_{\rm l}} = \rho_{--}\frac{3}{8}(1+\cos\theta_{\rm l}^{*2}+2A\cos_{\rm l}^{*}) + \rho_{++}\frac{3}{8}(1+\cos_{\rm l}^{*2}-2A\cos_{\rm l}^{*}) + \rho_{00}\frac{3}{4}\sin^{2}\theta_{\rm l}^{*}$ where $\rho_{--}, \rho_{++}, \rho_{00}$ are the diagonal elements of the spin density matrix(SDM) ρ_{00} corresponds to longitudinal polarization Extract $\rho_{--}, \rho_{++}, \rho_{00}$ from the data

Reconstruction $\cos\theta_{\rm l}$

- In ZZ :trivial
- Problem in WZ: $\sqrt{\hat{s}}$ is unknown, missing P_L(neutrino)
- Therefore can not know the boost to reconstruct cos θ₁
- Solution: require lepton mom. and missing Pt to be on W mass

Reconstruction $\cos \theta_{\rm I}$

- Gives quadratic equation with 2 solutions for the P_L (neutrino)
- For each P_L (neutrino) solution find the events contribution to the cross section
- Average 2 solutions for P_L (neutrino) according to the cross section weight Find actimated ⁽²⁾ and find ⁽³⁾
- Find estimated $\sqrt{\hat{s}}$ and find $\cos\theta_1^*$

Difference Between True and Reconstructed $\sqrt{\hat{s}}$

P_{00} As a Function of $\sqrt{\hat{s}}$ For WZ

Summary

- Di-Boson cross section can be measured with low luminosity
- TGC expected limits for WWZ, WWy, ZZZ and ZZy were presented
- Expected limits on NTGC improved in LHC from LEP2
- With high luminosity, polarization measurements in ZZ and WZ events are feasible

Backup slides

TGC limits

Int. Lumi (fb ⁻¹)	$\Delta \kappa_Z$	λ_Z	Δg_1^Z	$\Delta \kappa_{\gamma}$	λγ
0.1	[-0.242, 0.356]	[-0.206, 0.225]	[-0.741, 1.177]	[-0.476, 0.512]	[-0.564, 0.775]
1.0	[-0.117, 0.187]	[-0.108, 0.111]	[-0.355, 0.616]	[-0.240, 0.251]	[-0.259, 0.421]
10.0	[-0.035, 0.072]	[-0.040, 0.038]	[-0.149, 0.309]	[-0.088, 0.089]	[-0.074, 0.165]
30.0	[-0.026, 0.048]	[-0.028, 0.027]	[-0.149, 0.251]	[-0.056, 0.054]	[-0.052, 0.100]

Table 21: One-dimensional 95% C.L. interval of the WWZ and WW γ anomalous coupling sensitivities from the WW final state analysis for 0.1, 1, 10 and 30 fb⁻¹ integrated luminosities, with A = 2 TeV.

Table 3: Anomalous gauge coupling limits (95% C.L.) for $WW\gamma$ and WWZ from the Tevatron experiments, with $\Lambda = 2$ TeV.

Source $L(fb^{-1})$ 2y Coupling λz $\Delta \kappa_Z$ $\Delta \kappa_{\nu}$ $WW\gamma$ from $W^{\pm}\gamma$ D0 [27] 0.16 [-0.88, 0.96][-0.2, 0.2]WWZ from $W^{\pm}Z$ D0 [24] 1.0 [-0.17, 0.21][-0.12, 0.29]WWZ from $W^{\pm}Z$ CDF 1.9 [-0.13, 0.14][-0.82, 1.27] $WWZ = WW\gamma$ from W^+W^- D0 [30] 0.25 [-0.31, 0.33] [-0.36, 0.33]from W^+W^- , $W^{\pm}Z$ CDF [31] 0.35 [-0.18, 0.17][-0.46, 0.39]

ATLAS Limits:

Tevatron Limits